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Perfect Sets and The Cantor Set

Before  we start our discussion of perfect sets, let’s present a very important theorem, 

called the nested interval theorem, which is an essential tool that we’ll be using in the 

next few topics. 

Yet before presenting this theorem let’s make the following observation:

• Theorem:

A monotone, bounded sequence of real numbers converges in R.

Proof:

Let 8xn<
n=1
¥ Ì R be monotone and bounded. 

We first suppose that 8xn< is increasing (that is, xm £ xn whenever m < n). Now, since 8xn< 
is bounded, we may set x = sup

nÎN

HxnL (a real number). We will show that x = limit
n®¥

xn.

Let Ε > 0. Since x - Ε < x = sup
nÎN

HxnL, we must have xN > x - Ε for some N . But then, for 

any n ³ N , we have x - Ε < xN £ xn £ x. That is,  x - xn¤ < Ε " n ³ N . Consequently, 8xn< 
converges and x = sup

nÎN

HxnL = limit
n®¥

xn. 

Finally, if 8xn< is decreasing, consider the increasing sequence 8- xn<. from the first part 

of the proof, 8- xn< converges to sup
nÎN

H- xnL = - inf
nÎN

HxnL. It then follows that 8xn< converges 

to inf
nÎN

HxnL. à

• The Nested Interval Theorem:

If 8In<n=1
¥  is a sequence of closed, bounded, nonempty intervals in R with 

I1 � I2 � I3 � ..., 

then Ý
n=1

¥

In ¹ Æ. If, in addition, lengthHInL�0, then Ý
n=1

¥

In contains precisely one point.

Proof:

Write @an, bnD. Then In É In+1 means that an £ an+1 £ bn+1 £ bn " n. 

Thus,

     a = limit
n®¥

HanL = sup
nÎN

HanL and     b = limit
n®¥

HbnL = inf
nÎN

HbnL

both exist (as finite real numbers) and satisfy a £ b. Thus, we must have Ý
n=1

¥

In = @a, bD. 

Indeed, if x Î In " n, then an £ x £ bn " n, and hence a £ x £ b. Conversely, if a £ x £ b, 

then an £ x £ bn " n. That is, x Î In " n. Finally, if bn - an = lengthHInL�0, then a = b 

and so Ý
n=1

¥

In = 8a<.   à

(Alternate) Proof:  

  

Example:  

a) Note that it is essential that the intervals used in the nested interval theorem be both 

closed and bounded. 

Indeed, Ý
n=1

¥

@n, ¥L = Æ  and  Ý
n=1

¥

H0, 1 � nD = Æ .

b) Suppose that 8In< is a sequence of closed intervals with In É In+1 for all n and with 

lengthHInL�0  as  n�¥. If Ý
n=1

¥

In = 8x<, then any sequence of points 8xn<
n=1
¥ , with xn Î In 

for all n, must converge to x. Ù

                    PERFECT SETS

Definition:  A set P is a perfect set if it is empty or if it is a closed set and every point of 

P is a limit point of P. 

Example:  

a) The sets 

     • R     • H-¥, aD      • @a, ¥L  
as well as any closed and bounded intervals @a, bD (a < b), are perfect sets. 

b) The sets 

• Ha, bL • @a, bD Ü 8c< (b < c)    • Q   • R\Q

are not perfect sets. The sets Ha, bL, Q, and R\Q fail to be closed, even though every point 

in each of these sets is a limit point of the set. The set @a, bD Ü 8c< on the other hand, fails 

to be a perfect set because c is not a limit point of @a, bD Ü 8c<.  

c) Let 8xn<
n=1
¥  be convergent in HM , dL, that is, xn Ì

d

x in M . Then the set 8xn : n ³ 1< Ü 8x< 

is not perfect. Although the set is closed, only x is a limit point.  Ù

Notice that in all of the above listed examples of perfect subsets of R, the perfect sets 

turned out to be uncountable sets. The next theorem shows that this must always be the 

case.

• Theorem:

Let P be a perfect subset of R. Then P is uncountable. 

Proof:

Suppose to the contrary that P = 8x1, x2, ..., xn, ...< is countable. Let I1 be any closed 

interval centered at x1 of lengthHI1L £ 1. Then, since x1 Î P and P is perfect, it follows 

that x1 is a limit point of P. In particular, HI1\8x1<L Ý P ¹ Æ.

Let n2 be the smallest integer for which xn2
Î HI1\8x1<L Ý P and let I2 be any closed inter-

val centered at xn2
 of lengthHI2L £

1

2
 such that I2 Ì I1 and x1 Ï I2. Observe that by the 

minimality of n2, xk Ï I2  for any k < n2. 

Since xn2
Î P, it is a limit point of P and therefore II2\9xn2

=M Ý P ¹ Æ. Now let n3 be the 

smallest integer for which xn3
Î II2\9xn2

=M Ý P. Set I3 to be any closed interval centered at 

xn3
 of lengthHI3L £

1

3
 such that I3 Ì I2 and xn2

Ï I3.

Continuing in this fashion, we obtain a nested sequence of closed intervals 

I1 É I2 É I3 É ... such that lengthHInL�0  as n�¥  and xk Î Im for all k < nm. By the 

Nested Interval Theorem, Ý
n=1

¥

In = 8x<  for some x Î R. Notice, however, that x is a limit 

point of P because it is the limit point of the center points of the intervals In. Thus, as P 

is closed, we must have x Î P. (ÞÜ)

This is a contradiction: x cannot be any of the xm, since m £ nm and xm Ï Im+1. 

Thus P  must be uncountable, as desired. à

Example:  

a) Although we are still lacking the means to prove it, it can be shown that if P is a 

nonempty perfect subset of HM , dL in which every Cauchy sequence converges, P must 

be an uncountable set. 

b) Let HM , dL be a discrete metric space. Suppose P Ì M  is not empty. Then P is not 

perfect; B1HxL = 8x< for any x Î P. Hence x cannot be a limit point of P.

What went wrong? Every Cauchy sequence in HM , dL must converge in HM , dL. Why don’t 

we have perfect sets other than Æ?

c) Let M = Q under the usual metric of R. Then P = @0, 1D Ý Q is perfect in Q. Notice, 

however, that P Ì Q and must therefore be countable. Does this contradict a)? Absolutely 

not! Lots of Cauchy sequences of elements of  Q fail to converge in Q.  Ù

Note: It appears that nonempty perfect subsets are rather large. One would expect these 

sets to occupy some space on the real number line, for instance. However, reality is 

stronger than intuition. It seems that perfect subsets of R can be so constructed as to 

include almost all of R and yet be so thin that they fail to contain a single interval, no 

matter how small this interval may be.

We will see shortly how this materializes but before we can present our argument, a few 

definitions will prove useful.

Definition: Let A be a subset of a metric space HM , dL. If x Î A and x is not a limit point 

of A, then x is called an isolated point of A.

**Remark: Note that with this definition, we say that a set is perfect if it is closed and has 

no isolated points.**

Definition: A set A is said to be dense in HM .dL (or, as some authors say, everywhere 

dense) if A = M . That is, every point of M  is either in A or is a limit point of A if A is 

dense in M .

Definition: A set A is said to be nowhere dense in HM , dL if HALo
= Æ.

Example:  

a) The sets Q and R\Q are dense subsets of R.

b) Let A = : 1

n
: n ³ 1>. Then A is nowhere dense in R, because A = A Ü 80< and HALo

= Æ. 

c) Let HM , dL be discrete. If A Ì M , then A is both a closed and an open subset of M . 

Thus, A = A and A = Ao. Thus, if A is not empty, A = A = HALo
¹ Æ. Hence, A is not 

nowhere dense in M . Notice, however, that the statement “not nowhere dense” is not 

equivalent to the phrase “dense”. In fact, the only dense subset of M  is M  itself. Every 

point of a discrete space is an isolated point. 

d) In general, “not nowhere dense” is not the same as “dense”. In R, the set A = H0, 1L is 

not dense because A = @0, 1D ¹ R. However, A is not nowhere dense, as 

HALo
= A = H0, 1L ¹ Æ . The term “nowhere dense” is an unfortunate choice of language 

that is sadly too common in the literature to avoid. We should think of nowhere dense 

sets as “thin” sets or sets that are far from having even a single neighborhood. 

e) While R is everywhere dense in itself, it is nowhere dense when it is considered as a 

subset of R
2 (why?). Ù

Example:  

Suppose that a special forces unit has been sent into a zombie-infested area to search for 

survivors. The progress of the operation is being monitored in a remote HQ (see fig)

    

If the red dots represent the positions of the special-forces soldiers and the black dots 

are positions of detected zombies, what can you say about the outcome of this operation? 

Solution:

Every point on the screen is either a zombie or a limit point of zombies. Thus, topologi-

cally speaking, the set of all zombies is dense in the set of points. Notice also that the set 

of all red points is nowhere dense; that is, all neighborhoods of the red points have been 

breached with no chance for their recovery. Sadly, the operation is a fiasco. All of our 

brave soldiers will soon join the ranks of the undead. Ù

Now we are finally ready to present the argument that we alluded to previous to the 

above definitions:

• Lemma 1:

Let E be a closed subset of HM , dL and EHiL be the set of all isolated points of E. Then 

E\EHiL is a closed subset of HM , dL. 

Proof:

Let 8xn<
n=1
¥ Ì E\EHiL be a sequence that converges to x Î M . To show that E\EHiL is closed, 

we must prove that x Î E\EHiL. Notice, however, that since E is closed, xn Ì x � x Î E. 

Furthermore, this means that x is a limit point of E so x is not an isolated point, i.e. 

x Ï EHiL. Hence it follows that x Î E\EHiL as desired.  à

• Lemma 2:

Let E be a closed subset of R. Then the set of all isolated points of E, EHiL, is at most 

countable.

Proof:

Every isolated point of E is contained in an open interval that has no other points of E. 

In other words, if x Î EHiL, then x Î Ix such that Ix Ý E = 8x< and Ix is open. Thus, 

EHiL Ì Ü
xÎEHiL

Ix where Ix Ý Iy = Æ if x ¹ y.

Since each interval contains a rational, this union is countable. This indicates that EHiL is 

also countable as each Ix contains only one point of EHiL.   à

• Theorem:

There exist perfect subsets of R that contain nearly all of R and yet fail to have even a 

single rational number. Such sets must be nowhere dense.

Proof:

Let Ε > 0. List all the rational numbers in a sequence 8rn<
n=1
¥  and put each rn at the center 

of an open interval In of lengthHInL =
Ε

2n .

If G = Ü
n=1

¥

In, then G is open and

   lengthHGL £ Ú
n=1

¥

lengthHInL = Ú
n=1

¥
Ε

2n = Ε .

Setting E = Gc, we see that E is a closed set whose size must be infinite. That is, 

lengthHEL = ¥. Thus, E must be uncountable. 

By lemma 1, E\EHiL is also a closed set and by lemma 2, E\EHiL must be uncountable 

(because we delete at most countably many points). Finally, observe that P = E\EHiL is a 

perfect subset of R. à

          THE CANTOR SET

Consider the process of successively removing “middle thirds” from the interval @0, 1D. 
    

           

We continue this process inductively. At the nth stage we construct In from In-1 by remov-

ing 2n-1 disjoint, open, “middle thirds” intervals from In-1, each of length 3-n; we will call 

this discarded set Jn. 

Thus, In is the union of 2n closed subintervals of In-1, and the complement of In in @0, 1D 
is J1 Ü ... Ü Jn . The Cantor set D is defined as the set of points that still remain at the end 

of this process, in other words, the “limit” of the sets In. 

More precisely, D = Ý
n=1

¥

In. 

It follows from the nested interval theorem that D ¹ Ø , but notice that D is at least count-

ably infinite. The endpoints of each In are in D:

  0, 1,
1

3
,

2

3
,

1

9
,

2

9
, ... Î D .

We will refer to these points as the endpoints of D, that is, all of the points in D of the 

form 
a

3n
 for some integers a and n. 

As we shall see presently, D is actually uncountable! This is more than a little surprising. 

Just try to imagine how terribly sparse the next few levels of the “middle thirds” diagram 

would look on the page. Adding even a few more levels defies the limits of typesetting! 

For good measure we will give two proofs that D is uncountable, the first being some-

what combinatorial. Notice that each subinterval of In-1 results in two subintervals of In 

(after discarding a middle third). We label these two new intervals L and R (for left and 

right) :

       

               

As we progress down through the levels of the diagram toward the Cantor set 

(somewhere far below), imagine that we “step down” from one level to the next by repeat-

edly choosing either a step to the left (landing on an L interval in the next level below) or 

a step to the right (landing on an R interval). At each stage we are only allowed to step 

down to a subinterval of the interval we are presently on – jumping across “gaps” is not 

allowed! Thus, each string of choices, LRLRRLLRLLLR… , describes a unique “path” 

from the top level I0 down to the bottom level D. 

The Cantor set, then, is quite literally the “dust” at the end of the trail. Said another way, 

each such “path” determines a unique sequence of nested subintervals, one from each 

level, whose intersection is a single point of D. Conversely, each point x Î D lies at the 

end of exactly one such path, because at any given level there is only one possible subin-

terval of In on our diagram, call it I
�

n , that contains x. The resulting sequence of intervals 

is clearly nested (why?). 

Thus, the Cantor set D is in one-to-one correspondence with the set of all paths, that is, 

the set of all sequences of L’s and R’s. Of course, any two choices would have done just 

as well, so we might also say that D is equivalent to the set of all sequences of 0’s and 1’s 

– a set we already know to be uncountable. 

Here is what this means: 

          cardHDL = 2À0 = cardH@0, 1DL .

Absolutely amazing! The Cantor set is just as “big” as @0, 1D and yet it strains the imagina-

tion to picture such a sparse set of points. Before we give our second proof that D is 

uncountable, let’s see why D is “small” (in at least one sense). We will show that D has 

“measure zero”; that is, the “measure” or “total length” of all of the intervals in its comple-

ment @0, 1D\D is 1. 

Here’s why: 

By induction, the total length of the 2n-1 disjoint intervals comprising Jn (the set we 

discard at the nth stage) is 
2n-1

3n
. 

So the total length of @0, 1D\D must be

Ú
n=1

¥
2n-1

3n
=

1

3
Ú
n=1

¥

J 2

3
N
n-1

=
1

3

1

1 -
2

3

= 1 .

We have discarded everything!? And left uncountably many points behind!? How 

bizarre! This simultaneous “bigness” and “smallness” is precisely what makes the Cantor 

set so intriguing.

Our second proof that D is uncountable is based on an equivalent characterization of D 

in terms of ternary (base 3) decimals. Recall that each x in @0, 1D can be written, in possi-

bly more than one way, as: x = 0. a1 a2 a3 … Hbase 3L, where each an = 0, 1, or 2. This 

three-way choice for decimal digits (base 3) corresponds to the three-way splitting of 

intervals that we saw earlier. 

To see this, let us consider a few specific examples. 

For instance, the three cases a1 = 0, 1, or 2 correspond to the three intervals @0, 1 � 3D,  
H1 � 3, 2 � 3L,  and @2 � 3, 1D :

            

There is some ambiguity at these endpoints:

 

   

but each of these ambiguous cases has at least one representation with a1 in the proper 

range. Next, the figure below shows the situation for I2 (but this time ignoring the dis-

carded intervals): 

             

Again, some confusion is possible at the endpoints:

             

We take these few examples as proof of the following theorem.

• Theorem: 

x Î D iff x can be written as Ú
n=1

¥
an

3n
, where each an is either 0 or 2. 

Thus the Cantor set consists of those points in @0, 1D having some base 3 decimal represen-

tation that excludes the digit 1. Knowing this we can list all sorts of elements of D. For 

example, 
1

4
Î D because 

1

4
= 0.020202 … Hbase 3L. 

The above theorem also leads to another proof that D is uncountable; or, rather, it gives 

us a new way of writing the old proof. The first proof used sequences of 0’s and 1’s, and 

now we find ourselves with sequences of 0’s and 2’s; the connection isn’t hard to guess.

• Corollary:

D is uncountable. In fact, D is equivalent to @0, 1D. 

Proof:

By altering our notation we can easily display a correspondence between D and @0, 1D. 

Each x Î D may be written x = Ú
n=1

¥
2 bn

3n
 , where bn = 0 or 1 , and now we define the Can-

tor function f : D�@0, 1D by

                f Ú
n=1

¥
2 bn

3n
= Ú

n=1

¥
bn

2n        (where bn = 0, 1)

  

That is, 

Now f  is clearly onto, and hence we have a second proof that D is uncountable (why?). 

But f  isn’t one-to-one; here’s why: 

           

The same phenomenon occurs at each pair of endpoints of any discarded “middle third” 

interval (i.e., a subinterval of Jn):

        

It is easy to see that f  is increasing; that is, if with x < y, then f HxL £ f H yL. We leave it as 

an exercise to check that f HxL = f H yL iff x and y are endpoints of a discarded “middle 

third” interval (see Exercise 26 on Carother’s ). Thus, f  is one-to-one except at the end-

points of D (a countable set), where it’s two-to-one. It follows that D is equivalent to 

@0, 1D. (How?) à



Before  we start our discussion of perfect sets, let’s present a very important theorem, 

called the nested interval theorem, which is an essential tool that we’ll be using in the 

next few topics. 

Yet before presenting this theorem let’s make the following observation:

• Theorem:

A monotone, bounded sequence of real numbers converges in R.

Proof:

Let 8xn<
n=1
¥ Ì R be monotone and bounded. 

We first suppose that 8xn< is increasing (that is, xm £ xn whenever m < n). Now, since 8xn< 
is bounded, we may set x = sup

nÎN

HxnL (a real number). We will show that x = limit
n®¥

xn.

Let Ε > 0. Since x - Ε < x = sup
nÎN

HxnL, we must have xN > x - Ε for some N . But then, for 

any n ³ N , we have x - Ε < xN £ xn £ x. That is,  x - xn¤ < Ε " n ³ N . Consequently, 8xn< 
converges and x = sup

nÎN

HxnL = limit
n®¥

xn. 

Finally, if 8xn< is decreasing, consider the increasing sequence 8- xn<. from the first part 

of the proof, 8- xn< converges to sup
nÎN

H- xnL = - inf
nÎN

HxnL. It then follows that 8xn< converges 

to inf
nÎN

HxnL. à

• The Nested Interval Theorem:

If 8In<n=1
¥  is a sequence of closed, bounded, nonempty intervals in R with 

I1 � I2 � I3 � ..., 

then Ý
n=1

¥

In ¹ Æ. If, in addition, lengthHInL�0, then Ý
n=1

¥

In contains precisely one point.

Proof:

Write @an, bnD. Then In É In+1 means that an £ an+1 £ bn+1 £ bn " n. 

Thus,

     a = limit
n®¥

HanL = sup
nÎN

HanL and     b = limit
n®¥

HbnL = inf
nÎN

HbnL

both exist (as finite real numbers) and satisfy a £ b. Thus, we must have Ý
n=1

¥

In = @a, bD. 

Indeed, if x Î In " n, then an £ x £ bn " n, and hence a £ x £ b. Conversely, if a £ x £ b, 

then an £ x £ bn " n. That is, x Î In " n. Finally, if bn - an = lengthHInL�0, then a = b 

and so Ý
n=1

¥

In = 8a<.   à

(Alternate) Proof:  

  

Example:  

a) Note that it is essential that the intervals used in the nested interval theorem be both 

closed and bounded. 

Indeed, Ý
n=1

¥

@n, ¥L = Æ  and  Ý
n=1

¥

H0, 1 � nD = Æ .

b) Suppose that 8In< is a sequence of closed intervals with In É In+1 for all n and with 

lengthHInL�0  as  n�¥. If Ý
n=1

¥

In = 8x<, then any sequence of points 8xn<
n=1
¥ , with xn Î In 

for all n, must converge to x. Ù

                    PERFECT SETS

Definition:  A set P is a perfect set if it is empty or if it is a closed set and every point of 

P is a limit point of P. 

Example:  

a) The sets 

     • R     • H-¥, aD      • @a, ¥L  
as well as any closed and bounded intervals @a, bD (a < b), are perfect sets. 

b) The sets 

• Ha, bL • @a, bD Ü 8c< (b < c)    • Q   • R\Q

are not perfect sets. The sets Ha, bL, Q, and R\Q fail to be closed, even though every point 

in each of these sets is a limit point of the set. The set @a, bD Ü 8c< on the other hand, fails 

to be a perfect set because c is not a limit point of @a, bD Ü 8c<.  

c) Let 8xn<
n=1
¥  be convergent in HM , dL, that is, xn Ì

d

x in M . Then the set 8xn : n ³ 1< Ü 8x< 

is not perfect. Although the set is closed, only x is a limit point.  Ù

Notice that in all of the above listed examples of perfect subsets of R, the perfect sets 

turned out to be uncountable sets. The next theorem shows that this must always be the 

case.

• Theorem:

Let P be a perfect subset of R. Then P is uncountable. 

Proof:

Suppose to the contrary that P = 8x1, x2, ..., xn, ...< is countable. Let I1 be any closed 

interval centered at x1 of lengthHI1L £ 1. Then, since x1 Î P and P is perfect, it follows 

that x1 is a limit point of P. In particular, HI1\8x1<L Ý P ¹ Æ.

Let n2 be the smallest integer for which xn2
Î HI1\8x1<L Ý P and let I2 be any closed inter-

val centered at xn2
 of lengthHI2L £

1

2
 such that I2 Ì I1 and x1 Ï I2. Observe that by the 

minimality of n2, xk Ï I2  for any k < n2. 

Since xn2
Î P, it is a limit point of P and therefore II2\9xn2

=M Ý P ¹ Æ. Now let n3 be the 

smallest integer for which xn3
Î II2\9xn2

=M Ý P. Set I3 to be any closed interval centered at 

xn3
 of lengthHI3L £

1

3
 such that I3 Ì I2 and xn2

Ï I3.

Continuing in this fashion, we obtain a nested sequence of closed intervals 

I1 É I2 É I3 É ... such that lengthHInL�0  as n�¥  and xk Î Im for all k < nm. By the 

Nested Interval Theorem, Ý
n=1

¥

In = 8x<  for some x Î R. Notice, however, that x is a limit 

point of P because it is the limit point of the center points of the intervals In. Thus, as P 

is closed, we must have x Î P. (ÞÜ)

This is a contradiction: x cannot be any of the xm, since m £ nm and xm Ï Im+1. 

Thus P  must be uncountable, as desired. à

Example:  

a) Although we are still lacking the means to prove it, it can be shown that if P is a 

nonempty perfect subset of HM , dL in which every Cauchy sequence converges, P must 

be an uncountable set. 

b) Let HM , dL be a discrete metric space. Suppose P Ì M  is not empty. Then P is not 

perfect; B1HxL = 8x< for any x Î P. Hence x cannot be a limit point of P.

What went wrong? Every Cauchy sequence in HM , dL must converge in HM , dL. Why don’t 

we have perfect sets other than Æ?

c) Let M = Q under the usual metric of R. Then P = @0, 1D Ý Q is perfect in Q. Notice, 

however, that P Ì Q and must therefore be countable. Does this contradict a)? Absolutely 

not! Lots of Cauchy sequences of elements of  Q fail to converge in Q.  Ù

Note: It appears that nonempty perfect subsets are rather large. One would expect these 

sets to occupy some space on the real number line, for instance. However, reality is 

stronger than intuition. It seems that perfect subsets of R can be so constructed as to 

include almost all of R and yet be so thin that they fail to contain a single interval, no 

matter how small this interval may be.

We will see shortly how this materializes but before we can present our argument, a few 

definitions will prove useful.

Definition: Let A be a subset of a metric space HM , dL. If x Î A and x is not a limit point 

of A, then x is called an isolated point of A.

**Remark: Note that with this definition, we say that a set is perfect if it is closed and has 

no isolated points.**

Definition: A set A is said to be dense in HM .dL (or, as some authors say, everywhere 

dense) if A = M . That is, every point of M  is either in A or is a limit point of A if A is 

dense in M .

Definition: A set A is said to be nowhere dense in HM , dL if HALo
= Æ.

Example:  

a) The sets Q and R\Q are dense subsets of R.

b) Let A = : 1

n
: n ³ 1>. Then A is nowhere dense in R, because A = A Ü 80< and HALo

= Æ. 

c) Let HM , dL be discrete. If A Ì M , then A is both a closed and an open subset of M . 

Thus, A = A and A = Ao. Thus, if A is not empty, A = A = HALo
¹ Æ. Hence, A is not 

nowhere dense in M . Notice, however, that the statement “not nowhere dense” is not 

equivalent to the phrase “dense”. In fact, the only dense subset of M  is M  itself. Every 

point of a discrete space is an isolated point. 

d) In general, “not nowhere dense” is not the same as “dense”. In R, the set A = H0, 1L is 

not dense because A = @0, 1D ¹ R. However, A is not nowhere dense, as 

HALo
= A = H0, 1L ¹ Æ . The term “nowhere dense” is an unfortunate choice of language 

that is sadly too common in the literature to avoid. We should think of nowhere dense 

sets as “thin” sets or sets that are far from having even a single neighborhood. 

e) While R is everywhere dense in itself, it is nowhere dense when it is considered as a 

subset of R
2 (why?). Ù

Example:  

Suppose that a special forces unit has been sent into a zombie-infested area to search for 

survivors. The progress of the operation is being monitored in a remote HQ (see fig)

    

If the red dots represent the positions of the special-forces soldiers and the black dots 

are positions of detected zombies, what can you say about the outcome of this operation? 

Solution:

Every point on the screen is either a zombie or a limit point of zombies. Thus, topologi-

cally speaking, the set of all zombies is dense in the set of points. Notice also that the set 

of all red points is nowhere dense; that is, all neighborhoods of the red points have been 

breached with no chance for their recovery. Sadly, the operation is a fiasco. All of our 

brave soldiers will soon join the ranks of the undead. Ù

Now we are finally ready to present the argument that we alluded to previous to the 

above definitions:

• Lemma 1:

Let E be a closed subset of HM , dL and EHiL be the set of all isolated points of E. Then 

E\EHiL is a closed subset of HM , dL. 

Proof:

Let 8xn<
n=1
¥ Ì E\EHiL be a sequence that converges to x Î M . To show that E\EHiL is closed, 

we must prove that x Î E\EHiL. Notice, however, that since E is closed, xn Ì x � x Î E. 

Furthermore, this means that x is a limit point of E so x is not an isolated point, i.e. 

x Ï EHiL. Hence it follows that x Î E\EHiL as desired.  à

• Lemma 2:

Let E be a closed subset of R. Then the set of all isolated points of E, EHiL, is at most 

countable.

Proof:

Every isolated point of E is contained in an open interval that has no other points of E. 

In other words, if x Î EHiL, then x Î Ix such that Ix Ý E = 8x< and Ix is open. Thus, 

EHiL Ì Ü
xÎEHiL

Ix where Ix Ý Iy = Æ if x ¹ y.

Since each interval contains a rational, this union is countable. This indicates that EHiL is 

also countable as each Ix contains only one point of EHiL.   à

• Theorem:

There exist perfect subsets of R that contain nearly all of R and yet fail to have even a 

single rational number. Such sets must be nowhere dense.

Proof:

Let Ε > 0. List all the rational numbers in a sequence 8rn<
n=1
¥  and put each rn at the center 

of an open interval In of lengthHInL =
Ε

2n .

If G = Ü
n=1

¥

In, then G is open and

   lengthHGL £ Ú
n=1

¥

lengthHInL = Ú
n=1

¥
Ε

2n = Ε .

Setting E = Gc, we see that E is a closed set whose size must be infinite. That is, 

lengthHEL = ¥. Thus, E must be uncountable. 

By lemma 1, E\EHiL is also a closed set and by lemma 2, E\EHiL must be uncountable 

(because we delete at most countably many points). Finally, observe that P = E\EHiL is a 

perfect subset of R. à

          THE CANTOR SET

Consider the process of successively removing “middle thirds” from the interval @0, 1D. 
    

           

We continue this process inductively. At the nth stage we construct In from In-1 by remov-

ing 2n-1 disjoint, open, “middle thirds” intervals from In-1, each of length 3-n; we will call 

this discarded set Jn. 

Thus, In is the union of 2n closed subintervals of In-1, and the complement of In in @0, 1D 
is J1 Ü ... Ü Jn . The Cantor set D is defined as the set of points that still remain at the end 

of this process, in other words, the “limit” of the sets In. 

More precisely, D = Ý
n=1

¥

In. 

It follows from the nested interval theorem that D ¹ Ø , but notice that D is at least count-

ably infinite. The endpoints of each In are in D:

  0, 1,
1

3
,

2

3
,

1

9
,

2

9
, ... Î D .

We will refer to these points as the endpoints of D, that is, all of the points in D of the 

form 
a

3n
 for some integers a and n. 

As we shall see presently, D is actually uncountable! This is more than a little surprising. 

Just try to imagine how terribly sparse the next few levels of the “middle thirds” diagram 

would look on the page. Adding even a few more levels defies the limits of typesetting! 

For good measure we will give two proofs that D is uncountable, the first being some-

what combinatorial. Notice that each subinterval of In-1 results in two subintervals of In 

(after discarding a middle third). We label these two new intervals L and R (for left and 

right) :

       

               

As we progress down through the levels of the diagram toward the Cantor set 

(somewhere far below), imagine that we “step down” from one level to the next by repeat-

edly choosing either a step to the left (landing on an L interval in the next level below) or 

a step to the right (landing on an R interval). At each stage we are only allowed to step 

down to a subinterval of the interval we are presently on – jumping across “gaps” is not 

allowed! Thus, each string of choices, LRLRRLLRLLLR… , describes a unique “path” 

from the top level I0 down to the bottom level D. 

The Cantor set, then, is quite literally the “dust” at the end of the trail. Said another way, 

each such “path” determines a unique sequence of nested subintervals, one from each 

level, whose intersection is a single point of D. Conversely, each point x Î D lies at the 

end of exactly one such path, because at any given level there is only one possible subin-

terval of In on our diagram, call it I
�

n , that contains x. The resulting sequence of intervals 

is clearly nested (why?). 

Thus, the Cantor set D is in one-to-one correspondence with the set of all paths, that is, 

the set of all sequences of L’s and R’s. Of course, any two choices would have done just 

as well, so we might also say that D is equivalent to the set of all sequences of 0’s and 1’s 

– a set we already know to be uncountable. 

Here is what this means: 

          cardHDL = 2À0 = cardH@0, 1DL .

Absolutely amazing! The Cantor set is just as “big” as @0, 1D and yet it strains the imagina-

tion to picture such a sparse set of points. Before we give our second proof that D is 

uncountable, let’s see why D is “small” (in at least one sense). We will show that D has 

“measure zero”; that is, the “measure” or “total length” of all of the intervals in its comple-

ment @0, 1D\D is 1. 

Here’s why: 

By induction, the total length of the 2n-1 disjoint intervals comprising Jn (the set we 

discard at the nth stage) is 
2n-1

3n
. 

So the total length of @0, 1D\D must be

Ú
n=1

¥
2n-1

3n
=

1

3
Ú
n=1

¥

J 2

3
N
n-1

=
1

3

1

1 -
2

3

= 1 .

We have discarded everything!? And left uncountably many points behind!? How 

bizarre! This simultaneous “bigness” and “smallness” is precisely what makes the Cantor 

set so intriguing.

Our second proof that D is uncountable is based on an equivalent characterization of D 

in terms of ternary (base 3) decimals. Recall that each x in @0, 1D can be written, in possi-

bly more than one way, as: x = 0. a1 a2 a3 … Hbase 3L, where each an = 0, 1, or 2. This 

three-way choice for decimal digits (base 3) corresponds to the three-way splitting of 

intervals that we saw earlier. 

To see this, let us consider a few specific examples. 

For instance, the three cases a1 = 0, 1, or 2 correspond to the three intervals @0, 1 � 3D,  
H1 � 3, 2 � 3L,  and @2 � 3, 1D :

            

There is some ambiguity at these endpoints:

 

   

but each of these ambiguous cases has at least one representation with a1 in the proper 

range. Next, the figure below shows the situation for I2 (but this time ignoring the dis-

carded intervals): 

             

Again, some confusion is possible at the endpoints:

             

We take these few examples as proof of the following theorem.

• Theorem: 

x Î D iff x can be written as Ú
n=1

¥
an

3n
, where each an is either 0 or 2. 

Thus the Cantor set consists of those points in @0, 1D having some base 3 decimal represen-

tation that excludes the digit 1. Knowing this we can list all sorts of elements of D. For 

example, 
1

4
Î D because 

1

4
= 0.020202 … Hbase 3L. 

The above theorem also leads to another proof that D is uncountable; or, rather, it gives 

us a new way of writing the old proof. The first proof used sequences of 0’s and 1’s, and 

now we find ourselves with sequences of 0’s and 2’s; the connection isn’t hard to guess.

• Corollary:

D is uncountable. In fact, D is equivalent to @0, 1D. 

Proof:

By altering our notation we can easily display a correspondence between D and @0, 1D. 

Each x Î D may be written x = Ú
n=1

¥
2 bn

3n
 , where bn = 0 or 1 , and now we define the Can-

tor function f : D�@0, 1D by

                f Ú
n=1

¥
2 bn

3n
= Ú

n=1

¥
bn

2n        (where bn = 0, 1)

  

That is, 

Now f  is clearly onto, and hence we have a second proof that D is uncountable (why?). 

But f  isn’t one-to-one; here’s why: 

           

The same phenomenon occurs at each pair of endpoints of any discarded “middle third” 

interval (i.e., a subinterval of Jn):

        

It is easy to see that f  is increasing; that is, if with x < y, then f HxL £ f H yL. We leave it as 

an exercise to check that f HxL = f H yL iff x and y are endpoints of a discarded “middle 

third” interval (see Exercise 26 on Carother’s ). Thus, f  is one-to-one except at the end-

points of D (a countable set), where it’s two-to-one. It follows that D is equivalent to 

@0, 1D. (How?) à

2     Perfect Sets & Cantor Set.nb



Before  we start our discussion of perfect sets, let’s present a very important theorem, 

called the nested interval theorem, which is an essential tool that we’ll be using in the 

next few topics. 

Yet before presenting this theorem let’s make the following observation:

• Theorem:

A monotone, bounded sequence of real numbers converges in R.

Proof:

Let 8xn<
n=1
¥ Ì R be monotone and bounded. 

We first suppose that 8xn< is increasing (that is, xm £ xn whenever m < n). Now, since 8xn< 
is bounded, we may set x = sup

nÎN

HxnL (a real number). We will show that x = limit
n®¥

xn.

Let Ε > 0. Since x - Ε < x = sup
nÎN

HxnL, we must have xN > x - Ε for some N . But then, for 

any n ³ N , we have x - Ε < xN £ xn £ x. That is,  x - xn¤ < Ε " n ³ N . Consequently, 8xn< 
converges and x = sup

nÎN

HxnL = limit
n®¥

xn. 

Finally, if 8xn< is decreasing, consider the increasing sequence 8- xn<. from the first part 

of the proof, 8- xn< converges to sup
nÎN

H- xnL = - inf
nÎN

HxnL. It then follows that 8xn< converges 

to inf
nÎN

HxnL. à

• The Nested Interval Theorem:

If 8In<n=1
¥  is a sequence of closed, bounded, nonempty intervals in R with 

I1 � I2 � I3 � ..., 

then Ý
n=1

¥

In ¹ Æ. If, in addition, lengthHInL�0, then Ý
n=1

¥

In contains precisely one point.

Proof:

Write @an, bnD. Then In É In+1 means that an £ an+1 £ bn+1 £ bn " n. 

Thus,

     a = limit
n®¥

HanL = sup
nÎN

HanL and     b = limit
n®¥

HbnL = inf
nÎN

HbnL

both exist (as finite real numbers) and satisfy a £ b. Thus, we must have Ý
n=1

¥

In = @a, bD. 

Indeed, if x Î In " n, then an £ x £ bn " n, and hence a £ x £ b. Conversely, if a £ x £ b, 

then an £ x £ bn " n. That is, x Î In " n. Finally, if bn - an = lengthHInL�0, then a = b 

and so Ý
n=1

¥

In = 8a<.   à

(Alternate) Proof:  

  

Example:  

a) Note that it is essential that the intervals used in the nested interval theorem be both 

closed and bounded. 

Indeed, Ý
n=1

¥

@n, ¥L = Æ  and  Ý
n=1

¥

H0, 1 � nD = Æ .

b) Suppose that 8In< is a sequence of closed intervals with In É In+1 for all n and with 

lengthHInL�0  as  n�¥. If Ý
n=1

¥

In = 8x<, then any sequence of points 8xn<
n=1
¥ , with xn Î In 

for all n, must converge to x. Ù

                    PERFECT SETS

Definition:  A set P is a perfect set if it is empty or if it is a closed set and every point of 

P is a limit point of P. 

Example:  

a) The sets 

     • R     • H-¥, aD      • @a, ¥L  
as well as any closed and bounded intervals @a, bD (a < b), are perfect sets. 

b) The sets 

• Ha, bL • @a, bD Ü 8c< (b < c)    • Q   • R\Q

are not perfect sets. The sets Ha, bL, Q, and R\Q fail to be closed, even though every point 

in each of these sets is a limit point of the set. The set @a, bD Ü 8c< on the other hand, fails 

to be a perfect set because c is not a limit point of @a, bD Ü 8c<.  

c) Let 8xn<
n=1
¥  be convergent in HM , dL, that is, xn Ì

d

x in M . Then the set 8xn : n ³ 1< Ü 8x< 

is not perfect. Although the set is closed, only x is a limit point.  Ù

Notice that in all of the above listed examples of perfect subsets of R, the perfect sets 

turned out to be uncountable sets. The next theorem shows that this must always be the 

case.

• Theorem:

Let P be a perfect subset of R. Then P is uncountable. 

Proof:

Suppose to the contrary that P = 8x1, x2, ..., xn, ...< is countable. Let I1 be any closed 

interval centered at x1 of lengthHI1L £ 1. Then, since x1 Î P and P is perfect, it follows 

that x1 is a limit point of P. In particular, HI1\8x1<L Ý P ¹ Æ.

Let n2 be the smallest integer for which xn2
Î HI1\8x1<L Ý P and let I2 be any closed inter-

val centered at xn2
 of lengthHI2L £

1

2
 such that I2 Ì I1 and x1 Ï I2. Observe that by the 

minimality of n2, xk Ï I2  for any k < n2. 

Since xn2
Î P, it is a limit point of P and therefore II2\9xn2

=M Ý P ¹ Æ. Now let n3 be the 

smallest integer for which xn3
Î II2\9xn2

=M Ý P. Set I3 to be any closed interval centered at 

xn3
 of lengthHI3L £

1

3
 such that I3 Ì I2 and xn2

Ï I3.

Continuing in this fashion, we obtain a nested sequence of closed intervals 

I1 É I2 É I3 É ... such that lengthHInL�0  as n�¥  and xk Î Im for all k < nm. By the 

Nested Interval Theorem, Ý
n=1

¥

In = 8x<  for some x Î R. Notice, however, that x is a limit 

point of P because it is the limit point of the center points of the intervals In. Thus, as P 

is closed, we must have x Î P. (ÞÜ)

This is a contradiction: x cannot be any of the xm, since m £ nm and xm Ï Im+1. 

Thus P  must be uncountable, as desired. à

Example:  

a) Although we are still lacking the means to prove it, it can be shown that if P is a 

nonempty perfect subset of HM , dL in which every Cauchy sequence converges, P must 

be an uncountable set. 

b) Let HM , dL be a discrete metric space. Suppose P Ì M  is not empty. Then P is not 

perfect; B1HxL = 8x< for any x Î P. Hence x cannot be a limit point of P.

What went wrong? Every Cauchy sequence in HM , dL must converge in HM , dL. Why don’t 

we have perfect sets other than Æ?

c) Let M = Q under the usual metric of R. Then P = @0, 1D Ý Q is perfect in Q. Notice, 

however, that P Ì Q and must therefore be countable. Does this contradict a)? Absolutely 

not! Lots of Cauchy sequences of elements of  Q fail to converge in Q.  Ù

Note: It appears that nonempty perfect subsets are rather large. One would expect these 

sets to occupy some space on the real number line, for instance. However, reality is 

stronger than intuition. It seems that perfect subsets of R can be so constructed as to 

include almost all of R and yet be so thin that they fail to contain a single interval, no 

matter how small this interval may be.

We will see shortly how this materializes but before we can present our argument, a few 

definitions will prove useful.

Definition: Let A be a subset of a metric space HM , dL. If x Î A and x is not a limit point 

of A, then x is called an isolated point of A.

**Remark: Note that with this definition, we say that a set is perfect if it is closed and has 

no isolated points.**

Definition: A set A is said to be dense in HM .dL (or, as some authors say, everywhere 

dense) if A = M . That is, every point of M  is either in A or is a limit point of A if A is 

dense in M .

Definition: A set A is said to be nowhere dense in HM , dL if HALo
= Æ.

Example:  

a) The sets Q and R\Q are dense subsets of R.

b) Let A = : 1

n
: n ³ 1>. Then A is nowhere dense in R, because A = A Ü 80< and HALo

= Æ. 

c) Let HM , dL be discrete. If A Ì M , then A is both a closed and an open subset of M . 

Thus, A = A and A = Ao. Thus, if A is not empty, A = A = HALo
¹ Æ. Hence, A is not 

nowhere dense in M . Notice, however, that the statement “not nowhere dense” is not 

equivalent to the phrase “dense”. In fact, the only dense subset of M  is M  itself. Every 

point of a discrete space is an isolated point. 

d) In general, “not nowhere dense” is not the same as “dense”. In R, the set A = H0, 1L is 

not dense because A = @0, 1D ¹ R. However, A is not nowhere dense, as 

HALo
= A = H0, 1L ¹ Æ . The term “nowhere dense” is an unfortunate choice of language 

that is sadly too common in the literature to avoid. We should think of nowhere dense 

sets as “thin” sets or sets that are far from having even a single neighborhood. 

e) While R is everywhere dense in itself, it is nowhere dense when it is considered as a 

subset of R
2 (why?). Ù

Example:  

Suppose that a special forces unit has been sent into a zombie-infested area to search for 

survivors. The progress of the operation is being monitored in a remote HQ (see fig)

    

If the red dots represent the positions of the special-forces soldiers and the black dots 

are positions of detected zombies, what can you say about the outcome of this operation? 

Solution:

Every point on the screen is either a zombie or a limit point of zombies. Thus, topologi-

cally speaking, the set of all zombies is dense in the set of points. Notice also that the set 

of all red points is nowhere dense; that is, all neighborhoods of the red points have been 

breached with no chance for their recovery. Sadly, the operation is a fiasco. All of our 

brave soldiers will soon join the ranks of the undead. Ù

Now we are finally ready to present the argument that we alluded to previous to the 

above definitions:

• Lemma 1:

Let E be a closed subset of HM , dL and EHiL be the set of all isolated points of E. Then 

E\EHiL is a closed subset of HM , dL. 

Proof:

Let 8xn<
n=1
¥ Ì E\EHiL be a sequence that converges to x Î M . To show that E\EHiL is closed, 

we must prove that x Î E\EHiL. Notice, however, that since E is closed, xn Ì x � x Î E. 

Furthermore, this means that x is a limit point of E so x is not an isolated point, i.e. 

x Ï EHiL. Hence it follows that x Î E\EHiL as desired.  à

• Lemma 2:

Let E be a closed subset of R. Then the set of all isolated points of E, EHiL, is at most 

countable.

Proof:

Every isolated point of E is contained in an open interval that has no other points of E. 

In other words, if x Î EHiL, then x Î Ix such that Ix Ý E = 8x< and Ix is open. Thus, 

EHiL Ì Ü
xÎEHiL

Ix where Ix Ý Iy = Æ if x ¹ y.

Since each interval contains a rational, this union is countable. This indicates that EHiL is 

also countable as each Ix contains only one point of EHiL.   à

• Theorem:

There exist perfect subsets of R that contain nearly all of R and yet fail to have even a 

single rational number. Such sets must be nowhere dense.

Proof:

Let Ε > 0. List all the rational numbers in a sequence 8rn<
n=1
¥  and put each rn at the center 

of an open interval In of lengthHInL =
Ε

2n .

If G = Ü
n=1

¥

In, then G is open and

   lengthHGL £ Ú
n=1

¥

lengthHInL = Ú
n=1

¥
Ε

2n = Ε .

Setting E = Gc, we see that E is a closed set whose size must be infinite. That is, 

lengthHEL = ¥. Thus, E must be uncountable. 

By lemma 1, E\EHiL is also a closed set and by lemma 2, E\EHiL must be uncountable 

(because we delete at most countably many points). Finally, observe that P = E\EHiL is a 

perfect subset of R. à

          THE CANTOR SET

Consider the process of successively removing “middle thirds” from the interval @0, 1D. 
    

           

We continue this process inductively. At the nth stage we construct In from In-1 by remov-

ing 2n-1 disjoint, open, “middle thirds” intervals from In-1, each of length 3-n; we will call 

this discarded set Jn. 

Thus, In is the union of 2n closed subintervals of In-1, and the complement of In in @0, 1D 
is J1 Ü ... Ü Jn . The Cantor set D is defined as the set of points that still remain at the end 

of this process, in other words, the “limit” of the sets In. 

More precisely, D = Ý
n=1

¥

In. 

It follows from the nested interval theorem that D ¹ Ø , but notice that D is at least count-

ably infinite. The endpoints of each In are in D:

  0, 1,
1

3
,

2

3
,

1

9
,

2

9
, ... Î D .

We will refer to these points as the endpoints of D, that is, all of the points in D of the 

form 
a

3n
 for some integers a and n. 

As we shall see presently, D is actually uncountable! This is more than a little surprising. 

Just try to imagine how terribly sparse the next few levels of the “middle thirds” diagram 

would look on the page. Adding even a few more levels defies the limits of typesetting! 

For good measure we will give two proofs that D is uncountable, the first being some-

what combinatorial. Notice that each subinterval of In-1 results in two subintervals of In 

(after discarding a middle third). We label these two new intervals L and R (for left and 

right) :

       

               

As we progress down through the levels of the diagram toward the Cantor set 

(somewhere far below), imagine that we “step down” from one level to the next by repeat-

edly choosing either a step to the left (landing on an L interval in the next level below) or 

a step to the right (landing on an R interval). At each stage we are only allowed to step 

down to a subinterval of the interval we are presently on – jumping across “gaps” is not 

allowed! Thus, each string of choices, LRLRRLLRLLLR… , describes a unique “path” 

from the top level I0 down to the bottom level D. 

The Cantor set, then, is quite literally the “dust” at the end of the trail. Said another way, 

each such “path” determines a unique sequence of nested subintervals, one from each 

level, whose intersection is a single point of D. Conversely, each point x Î D lies at the 

end of exactly one such path, because at any given level there is only one possible subin-

terval of In on our diagram, call it I
�

n , that contains x. The resulting sequence of intervals 

is clearly nested (why?). 

Thus, the Cantor set D is in one-to-one correspondence with the set of all paths, that is, 

the set of all sequences of L’s and R’s. Of course, any two choices would have done just 

as well, so we might also say that D is equivalent to the set of all sequences of 0’s and 1’s 

– a set we already know to be uncountable. 

Here is what this means: 

          cardHDL = 2À0 = cardH@0, 1DL .

Absolutely amazing! The Cantor set is just as “big” as @0, 1D and yet it strains the imagina-

tion to picture such a sparse set of points. Before we give our second proof that D is 

uncountable, let’s see why D is “small” (in at least one sense). We will show that D has 

“measure zero”; that is, the “measure” or “total length” of all of the intervals in its comple-

ment @0, 1D\D is 1. 

Here’s why: 

By induction, the total length of the 2n-1 disjoint intervals comprising Jn (the set we 

discard at the nth stage) is 
2n-1

3n
. 

So the total length of @0, 1D\D must be

Ú
n=1

¥
2n-1

3n
=

1

3
Ú
n=1

¥

J 2

3
N
n-1

=
1

3

1

1 -
2

3

= 1 .

We have discarded everything!? And left uncountably many points behind!? How 

bizarre! This simultaneous “bigness” and “smallness” is precisely what makes the Cantor 

set so intriguing.

Our second proof that D is uncountable is based on an equivalent characterization of D 

in terms of ternary (base 3) decimals. Recall that each x in @0, 1D can be written, in possi-

bly more than one way, as: x = 0. a1 a2 a3 … Hbase 3L, where each an = 0, 1, or 2. This 

three-way choice for decimal digits (base 3) corresponds to the three-way splitting of 

intervals that we saw earlier. 

To see this, let us consider a few specific examples. 

For instance, the three cases a1 = 0, 1, or 2 correspond to the three intervals @0, 1 � 3D,  
H1 � 3, 2 � 3L,  and @2 � 3, 1D :

            

There is some ambiguity at these endpoints:

 

   

but each of these ambiguous cases has at least one representation with a1 in the proper 

range. Next, the figure below shows the situation for I2 (but this time ignoring the dis-

carded intervals): 

             

Again, some confusion is possible at the endpoints:

             

We take these few examples as proof of the following theorem.

• Theorem: 

x Î D iff x can be written as Ú
n=1

¥
an

3n
, where each an is either 0 or 2. 

Thus the Cantor set consists of those points in @0, 1D having some base 3 decimal represen-

tation that excludes the digit 1. Knowing this we can list all sorts of elements of D. For 

example, 
1

4
Î D because 

1

4
= 0.020202 … Hbase 3L. 

The above theorem also leads to another proof that D is uncountable; or, rather, it gives 

us a new way of writing the old proof. The first proof used sequences of 0’s and 1’s, and 

now we find ourselves with sequences of 0’s and 2’s; the connection isn’t hard to guess.

• Corollary:

D is uncountable. In fact, D is equivalent to @0, 1D. 

Proof:

By altering our notation we can easily display a correspondence between D and @0, 1D. 

Each x Î D may be written x = Ú
n=1

¥
2 bn

3n
 , where bn = 0 or 1 , and now we define the Can-

tor function f : D�@0, 1D by

                f Ú
n=1

¥
2 bn

3n
= Ú

n=1

¥
bn

2n        (where bn = 0, 1)

  

That is, 

Now f  is clearly onto, and hence we have a second proof that D is uncountable (why?). 

But f  isn’t one-to-one; here’s why: 

           

The same phenomenon occurs at each pair of endpoints of any discarded “middle third” 

interval (i.e., a subinterval of Jn):

        

It is easy to see that f  is increasing; that is, if with x < y, then f HxL £ f H yL. We leave it as 

an exercise to check that f HxL = f H yL iff x and y are endpoints of a discarded “middle 

third” interval (see Exercise 26 on Carother’s ). Thus, f  is one-to-one except at the end-

points of D (a countable set), where it’s two-to-one. It follows that D is equivalent to 

@0, 1D. (How?) à
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Before  we start our discussion of perfect sets, let’s present a very important theorem, 

called the nested interval theorem, which is an essential tool that we’ll be using in the 

next few topics. 

Yet before presenting this theorem let’s make the following observation:

• Theorem:

A monotone, bounded sequence of real numbers converges in R.

Proof:

Let 8xn<
n=1
¥ Ì R be monotone and bounded. 

We first suppose that 8xn< is increasing (that is, xm £ xn whenever m < n). Now, since 8xn< 
is bounded, we may set x = sup

nÎN

HxnL (a real number). We will show that x = limit
n®¥

xn.

Let Ε > 0. Since x - Ε < x = sup
nÎN

HxnL, we must have xN > x - Ε for some N . But then, for 

any n ³ N , we have x - Ε < xN £ xn £ x. That is,  x - xn¤ < Ε " n ³ N . Consequently, 8xn< 
converges and x = sup

nÎN

HxnL = limit
n®¥

xn. 

Finally, if 8xn< is decreasing, consider the increasing sequence 8- xn<. from the first part 

of the proof, 8- xn< converges to sup
nÎN

H- xnL = - inf
nÎN

HxnL. It then follows that 8xn< converges 

to inf
nÎN

HxnL. à

• The Nested Interval Theorem:

If 8In<n=1
¥  is a sequence of closed, bounded, nonempty intervals in R with 

I1 � I2 � I3 � ..., 

then Ý
n=1

¥

In ¹ Æ. If, in addition, lengthHInL�0, then Ý
n=1

¥

In contains precisely one point.

Proof:

Write @an, bnD. Then In É In+1 means that an £ an+1 £ bn+1 £ bn " n. 

Thus,

     a = limit
n®¥

HanL = sup
nÎN

HanL and     b = limit
n®¥

HbnL = inf
nÎN

HbnL

both exist (as finite real numbers) and satisfy a £ b. Thus, we must have Ý
n=1

¥

In = @a, bD. 

Indeed, if x Î In " n, then an £ x £ bn " n, and hence a £ x £ b. Conversely, if a £ x £ b, 

then an £ x £ bn " n. That is, x Î In " n. Finally, if bn - an = lengthHInL�0, then a = b 

and so Ý
n=1

¥

In = 8a<.   à

(Alternate) Proof:  

  

Example:  

a) Note that it is essential that the intervals used in the nested interval theorem be both 

closed and bounded. 

Indeed, Ý
n=1

¥

@n, ¥L = Æ  and  Ý
n=1

¥

H0, 1 � nD = Æ .

b) Suppose that 8In< is a sequence of closed intervals with In É In+1 for all n and with 

lengthHInL�0  as  n�¥. If Ý
n=1

¥

In = 8x<, then any sequence of points 8xn<
n=1
¥ , with xn Î In 

for all n, must converge to x. Ù

                    PERFECT SETS

Definition:  A set P is a perfect set if it is empty or if it is a closed set and every point of 

P is a limit point of P. 

Example:  

a) The sets 

     • R     • H-¥, aD      • @a, ¥L  
as well as any closed and bounded intervals @a, bD (a < b), are perfect sets. 

b) The sets 

• Ha, bL • @a, bD Ü 8c< (b < c)    • Q   • R\Q

are not perfect sets. The sets Ha, bL, Q, and R\Q fail to be closed, even though every point 

in each of these sets is a limit point of the set. The set @a, bD Ü 8c< on the other hand, fails 

to be a perfect set because c is not a limit point of @a, bD Ü 8c<.  

c) Let 8xn<
n=1
¥  be convergent in HM , dL, that is, xn Ì

d

x in M . Then the set 8xn : n ³ 1< Ü 8x< 

is not perfect. Although the set is closed, only x is a limit point.  Ù

Notice that in all of the above listed examples of perfect subsets of R, the perfect sets 

turned out to be uncountable sets. The next theorem shows that this must always be the 

case.

• Theorem:

Let P be a perfect subset of R. Then P is uncountable. 

Proof:

Suppose to the contrary that P = 8x1, x2, ..., xn, ...< is countable. Let I1 be any closed 

interval centered at x1 of lengthHI1L £ 1. Then, since x1 Î P and P is perfect, it follows 

that x1 is a limit point of P. In particular, HI1\8x1<L Ý P ¹ Æ.

Let n2 be the smallest integer for which xn2
Î HI1\8x1<L Ý P and let I2 be any closed inter-

val centered at xn2
 of lengthHI2L £

1

2
 such that I2 Ì I1 and x1 Ï I2. Observe that by the 

minimality of n2, xk Ï I2  for any k < n2. 

Since xn2
Î P, it is a limit point of P and therefore II2\9xn2

=M Ý P ¹ Æ. Now let n3 be the 

smallest integer for which xn3
Î II2\9xn2

=M Ý P. Set I3 to be any closed interval centered at 

xn3
 of lengthHI3L £

1

3
 such that I3 Ì I2 and xn2

Ï I3.

Continuing in this fashion, we obtain a nested sequence of closed intervals 

I1 É I2 É I3 É ... such that lengthHInL�0  as n�¥  and xk Î Im for all k < nm. By the 

Nested Interval Theorem, Ý
n=1

¥

In = 8x<  for some x Î R. Notice, however, that x is a limit 

point of P because it is the limit point of the center points of the intervals In. Thus, as P 

is closed, we must have x Î P. (ÞÜ)

This is a contradiction: x cannot be any of the xm, since m £ nm and xm Ï Im+1. 

Thus P  must be uncountable, as desired. à

Example:  

a) Although we are still lacking the means to prove it, it can be shown that if P is a 

nonempty perfect subset of HM , dL in which every Cauchy sequence converges, P must 

be an uncountable set. 

b) Let HM , dL be a discrete metric space. Suppose P Ì M  is not empty. Then P is not 

perfect; B1HxL = 8x< for any x Î P. Hence x cannot be a limit point of P.

What went wrong? Every Cauchy sequence in HM , dL must converge in HM , dL. Why don’t 

we have perfect sets other than Æ?

c) Let M = Q under the usual metric of R. Then P = @0, 1D Ý Q is perfect in Q. Notice, 

however, that P Ì Q and must therefore be countable. Does this contradict a)? Absolutely 

not! Lots of Cauchy sequences of elements of  Q fail to converge in Q.  Ù

Note: It appears that nonempty perfect subsets are rather large. One would expect these 

sets to occupy some space on the real number line, for instance. However, reality is 

stronger than intuition. It seems that perfect subsets of R can be so constructed as to 

include almost all of R and yet be so thin that they fail to contain a single interval, no 

matter how small this interval may be.

We will see shortly how this materializes but before we can present our argument, a few 

definitions will prove useful.

Definition: Let A be a subset of a metric space HM , dL. If x Î A and x is not a limit point 

of A, then x is called an isolated point of A.

**Remark: Note that with this definition, we say that a set is perfect if it is closed and has 

no isolated points.**

Definition: A set A is said to be dense in HM .dL (or, as some authors say, everywhere 

dense) if A = M . That is, every point of M  is either in A or is a limit point of A if A is 

dense in M .

Definition: A set A is said to be nowhere dense in HM , dL if HALo
= Æ.

Example:  

a) The sets Q and R\Q are dense subsets of R.

b) Let A = : 1

n
: n ³ 1>. Then A is nowhere dense in R, because A = A Ü 80< and HALo

= Æ. 

c) Let HM , dL be discrete. If A Ì M , then A is both a closed and an open subset of M . 

Thus, A = A and A = Ao. Thus, if A is not empty, A = A = HALo
¹ Æ. Hence, A is not 

nowhere dense in M . Notice, however, that the statement “not nowhere dense” is not 

equivalent to the phrase “dense”. In fact, the only dense subset of M  is M  itself. Every 

point of a discrete space is an isolated point. 

d) In general, “not nowhere dense” is not the same as “dense”. In R, the set A = H0, 1L is 

not dense because A = @0, 1D ¹ R. However, A is not nowhere dense, as 

HALo
= A = H0, 1L ¹ Æ . The term “nowhere dense” is an unfortunate choice of language 

that is sadly too common in the literature to avoid. We should think of nowhere dense 

sets as “thin” sets or sets that are far from having even a single neighborhood. 

e) While R is everywhere dense in itself, it is nowhere dense when it is considered as a 

subset of R
2 (why?). Ù

Example:  

Suppose that a special forces unit has been sent into a zombie-infested area to search for 

survivors. The progress of the operation is being monitored in a remote HQ (see fig)

    

If the red dots represent the positions of the special-forces soldiers and the black dots 

are positions of detected zombies, what can you say about the outcome of this operation? 

Solution:

Every point on the screen is either a zombie or a limit point of zombies. Thus, topologi-

cally speaking, the set of all zombies is dense in the set of points. Notice also that the set 

of all red points is nowhere dense; that is, all neighborhoods of the red points have been 

breached with no chance for their recovery. Sadly, the operation is a fiasco. All of our 

brave soldiers will soon join the ranks of the undead. Ù

Now we are finally ready to present the argument that we alluded to previous to the 

above definitions:

• Lemma 1:

Let E be a closed subset of HM , dL and EHiL be the set of all isolated points of E. Then 

E\EHiL is a closed subset of HM , dL. 

Proof:

Let 8xn<
n=1
¥ Ì E\EHiL be a sequence that converges to x Î M . To show that E\EHiL is closed, 

we must prove that x Î E\EHiL. Notice, however, that since E is closed, xn Ì x � x Î E. 

Furthermore, this means that x is a limit point of E so x is not an isolated point, i.e. 

x Ï EHiL. Hence it follows that x Î E\EHiL as desired.  à

• Lemma 2:

Let E be a closed subset of R. Then the set of all isolated points of E, EHiL, is at most 

countable.

Proof:

Every isolated point of E is contained in an open interval that has no other points of E. 

In other words, if x Î EHiL, then x Î Ix such that Ix Ý E = 8x< and Ix is open. Thus, 

EHiL Ì Ü
xÎEHiL

Ix where Ix Ý Iy = Æ if x ¹ y.

Since each interval contains a rational, this union is countable. This indicates that EHiL is 

also countable as each Ix contains only one point of EHiL.   à

• Theorem:

There exist perfect subsets of R that contain nearly all of R and yet fail to have even a 

single rational number. Such sets must be nowhere dense.

Proof:

Let Ε > 0. List all the rational numbers in a sequence 8rn<
n=1
¥  and put each rn at the center 

of an open interval In of lengthHInL =
Ε

2n .

If G = Ü
n=1

¥

In, then G is open and

   lengthHGL £ Ú
n=1

¥

lengthHInL = Ú
n=1

¥
Ε

2n = Ε .

Setting E = Gc, we see that E is a closed set whose size must be infinite. That is, 

lengthHEL = ¥. Thus, E must be uncountable. 

By lemma 1, E\EHiL is also a closed set and by lemma 2, E\EHiL must be uncountable 

(because we delete at most countably many points). Finally, observe that P = E\EHiL is a 

perfect subset of R. à

          THE CANTOR SET

Consider the process of successively removing “middle thirds” from the interval @0, 1D. 
    

           

We continue this process inductively. At the nth stage we construct In from In-1 by remov-

ing 2n-1 disjoint, open, “middle thirds” intervals from In-1, each of length 3-n; we will call 

this discarded set Jn. 

Thus, In is the union of 2n closed subintervals of In-1, and the complement of In in @0, 1D 
is J1 Ü ... Ü Jn . The Cantor set D is defined as the set of points that still remain at the end 

of this process, in other words, the “limit” of the sets In. 

More precisely, D = Ý
n=1

¥

In. 

It follows from the nested interval theorem that D ¹ Ø , but notice that D is at least count-

ably infinite. The endpoints of each In are in D:

  0, 1,
1

3
,

2

3
,

1

9
,

2

9
, ... Î D .

We will refer to these points as the endpoints of D, that is, all of the points in D of the 

form 
a

3n
 for some integers a and n. 

As we shall see presently, D is actually uncountable! This is more than a little surprising. 

Just try to imagine how terribly sparse the next few levels of the “middle thirds” diagram 

would look on the page. Adding even a few more levels defies the limits of typesetting! 

For good measure we will give two proofs that D is uncountable, the first being some-

what combinatorial. Notice that each subinterval of In-1 results in two subintervals of In 

(after discarding a middle third). We label these two new intervals L and R (for left and 

right) :

       

               

As we progress down through the levels of the diagram toward the Cantor set 

(somewhere far below), imagine that we “step down” from one level to the next by repeat-

edly choosing either a step to the left (landing on an L interval in the next level below) or 

a step to the right (landing on an R interval). At each stage we are only allowed to step 

down to a subinterval of the interval we are presently on – jumping across “gaps” is not 

allowed! Thus, each string of choices, LRLRRLLRLLLR… , describes a unique “path” 

from the top level I0 down to the bottom level D. 

The Cantor set, then, is quite literally the “dust” at the end of the trail. Said another way, 

each such “path” determines a unique sequence of nested subintervals, one from each 

level, whose intersection is a single point of D. Conversely, each point x Î D lies at the 

end of exactly one such path, because at any given level there is only one possible subin-

terval of In on our diagram, call it I
�

n , that contains x. The resulting sequence of intervals 

is clearly nested (why?). 

Thus, the Cantor set D is in one-to-one correspondence with the set of all paths, that is, 

the set of all sequences of L’s and R’s. Of course, any two choices would have done just 

as well, so we might also say that D is equivalent to the set of all sequences of 0’s and 1’s 

– a set we already know to be uncountable. 

Here is what this means: 

          cardHDL = 2À0 = cardH@0, 1DL .

Absolutely amazing! The Cantor set is just as “big” as @0, 1D and yet it strains the imagina-

tion to picture such a sparse set of points. Before we give our second proof that D is 

uncountable, let’s see why D is “small” (in at least one sense). We will show that D has 

“measure zero”; that is, the “measure” or “total length” of all of the intervals in its comple-

ment @0, 1D\D is 1. 

Here’s why: 

By induction, the total length of the 2n-1 disjoint intervals comprising Jn (the set we 

discard at the nth stage) is 
2n-1

3n
. 

So the total length of @0, 1D\D must be

Ú
n=1

¥
2n-1

3n
=

1

3
Ú
n=1

¥

J 2

3
N
n-1

=
1

3

1

1 -
2

3

= 1 .

We have discarded everything!? And left uncountably many points behind!? How 

bizarre! This simultaneous “bigness” and “smallness” is precisely what makes the Cantor 

set so intriguing.

Our second proof that D is uncountable is based on an equivalent characterization of D 

in terms of ternary (base 3) decimals. Recall that each x in @0, 1D can be written, in possi-

bly more than one way, as: x = 0. a1 a2 a3 … Hbase 3L, where each an = 0, 1, or 2. This 

three-way choice for decimal digits (base 3) corresponds to the three-way splitting of 

intervals that we saw earlier. 

To see this, let us consider a few specific examples. 

For instance, the three cases a1 = 0, 1, or 2 correspond to the three intervals @0, 1 � 3D,  
H1 � 3, 2 � 3L,  and @2 � 3, 1D :

            

There is some ambiguity at these endpoints:

 

   

but each of these ambiguous cases has at least one representation with a1 in the proper 

range. Next, the figure below shows the situation for I2 (but this time ignoring the dis-

carded intervals): 

             

Again, some confusion is possible at the endpoints:

             

We take these few examples as proof of the following theorem.

• Theorem: 

x Î D iff x can be written as Ú
n=1

¥
an

3n
, where each an is either 0 or 2. 

Thus the Cantor set consists of those points in @0, 1D having some base 3 decimal represen-

tation that excludes the digit 1. Knowing this we can list all sorts of elements of D. For 

example, 
1

4
Î D because 

1

4
= 0.020202 … Hbase 3L. 

The above theorem also leads to another proof that D is uncountable; or, rather, it gives 

us a new way of writing the old proof. The first proof used sequences of 0’s and 1’s, and 

now we find ourselves with sequences of 0’s and 2’s; the connection isn’t hard to guess.

• Corollary:

D is uncountable. In fact, D is equivalent to @0, 1D. 

Proof:

By altering our notation we can easily display a correspondence between D and @0, 1D. 

Each x Î D may be written x = Ú
n=1

¥
2 bn

3n
 , where bn = 0 or 1 , and now we define the Can-

tor function f : D�@0, 1D by

                f Ú
n=1

¥
2 bn

3n
= Ú

n=1

¥
bn

2n        (where bn = 0, 1)

  

That is, 

Now f  is clearly onto, and hence we have a second proof that D is uncountable (why?). 

But f  isn’t one-to-one; here’s why: 

           

The same phenomenon occurs at each pair of endpoints of any discarded “middle third” 

interval (i.e., a subinterval of Jn):

        

It is easy to see that f  is increasing; that is, if with x < y, then f HxL £ f H yL. We leave it as 

an exercise to check that f HxL = f H yL iff x and y are endpoints of a discarded “middle 

third” interval (see Exercise 26 on Carother’s ). Thus, f  is one-to-one except at the end-

points of D (a countable set), where it’s two-to-one. It follows that D is equivalent to 

@0, 1D. (How?) à
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Before  we start our discussion of perfect sets, let’s present a very important theorem, 

called the nested interval theorem, which is an essential tool that we’ll be using in the 

next few topics. 

Yet before presenting this theorem let’s make the following observation:

• Theorem:

A monotone, bounded sequence of real numbers converges in R.

Proof:

Let 8xn<
n=1
¥ Ì R be monotone and bounded. 

We first suppose that 8xn< is increasing (that is, xm £ xn whenever m < n). Now, since 8xn< 
is bounded, we may set x = sup

nÎN

HxnL (a real number). We will show that x = limit
n®¥

xn.

Let Ε > 0. Since x - Ε < x = sup
nÎN

HxnL, we must have xN > x - Ε for some N . But then, for 

any n ³ N , we have x - Ε < xN £ xn £ x. That is,  x - xn¤ < Ε " n ³ N . Consequently, 8xn< 
converges and x = sup

nÎN

HxnL = limit
n®¥

xn. 

Finally, if 8xn< is decreasing, consider the increasing sequence 8- xn<. from the first part 

of the proof, 8- xn< converges to sup
nÎN

H- xnL = - inf
nÎN

HxnL. It then follows that 8xn< converges 

to inf
nÎN

HxnL. à

• The Nested Interval Theorem:

If 8In<n=1
¥  is a sequence of closed, bounded, nonempty intervals in R with 

I1 � I2 � I3 � ..., 

then Ý
n=1

¥

In ¹ Æ. If, in addition, lengthHInL�0, then Ý
n=1

¥

In contains precisely one point.

Proof:

Write @an, bnD. Then In É In+1 means that an £ an+1 £ bn+1 £ bn " n. 

Thus,

     a = limit
n®¥

HanL = sup
nÎN

HanL and     b = limit
n®¥

HbnL = inf
nÎN

HbnL

both exist (as finite real numbers) and satisfy a £ b. Thus, we must have Ý
n=1

¥

In = @a, bD. 

Indeed, if x Î In " n, then an £ x £ bn " n, and hence a £ x £ b. Conversely, if a £ x £ b, 

then an £ x £ bn " n. That is, x Î In " n. Finally, if bn - an = lengthHInL�0, then a = b 

and so Ý
n=1

¥

In = 8a<.   à

(Alternate) Proof:  

  

Example:  

a) Note that it is essential that the intervals used in the nested interval theorem be both 

closed and bounded. 

Indeed, Ý
n=1

¥

@n, ¥L = Æ  and  Ý
n=1

¥

H0, 1 � nD = Æ .

b) Suppose that 8In< is a sequence of closed intervals with In É In+1 for all n and with 

lengthHInL�0  as  n�¥. If Ý
n=1

¥

In = 8x<, then any sequence of points 8xn<
n=1
¥ , with xn Î In 

for all n, must converge to x. Ù

                    PERFECT SETS

Definition:  A set P is a perfect set if it is empty or if it is a closed set and every point of 

P is a limit point of P. 

Example:  

a) The sets 

     • R     • H-¥, aD      • @a, ¥L  
as well as any closed and bounded intervals @a, bD (a < b), are perfect sets. 

b) The sets 

• Ha, bL • @a, bD Ü 8c< (b < c)    • Q   • R\Q

are not perfect sets. The sets Ha, bL, Q, and R\Q fail to be closed, even though every point 

in each of these sets is a limit point of the set. The set @a, bD Ü 8c< on the other hand, fails 

to be a perfect set because c is not a limit point of @a, bD Ü 8c<.  

c) Let 8xn<
n=1
¥  be convergent in HM , dL, that is, xn Ì

d

x in M . Then the set 8xn : n ³ 1< Ü 8x< 

is not perfect. Although the set is closed, only x is a limit point.  Ù

Notice that in all of the above listed examples of perfect subsets of R, the perfect sets 

turned out to be uncountable sets. The next theorem shows that this must always be the 

case.

• Theorem:

Let P be a perfect subset of R. Then P is uncountable. 

Proof:

Suppose to the contrary that P = 8x1, x2, ..., xn, ...< is countable. Let I1 be any closed 

interval centered at x1 of lengthHI1L £ 1. Then, since x1 Î P and P is perfect, it follows 

that x1 is a limit point of P. In particular, HI1\8x1<L Ý P ¹ Æ.

Let n2 be the smallest integer for which xn2
Î HI1\8x1<L Ý P and let I2 be any closed inter-

val centered at xn2
 of lengthHI2L £

1

2
 such that I2 Ì I1 and x1 Ï I2. Observe that by the 

minimality of n2, xk Ï I2  for any k < n2. 

Since xn2
Î P, it is a limit point of P and therefore II2\9xn2

=M Ý P ¹ Æ. Now let n3 be the 

smallest integer for which xn3
Î II2\9xn2

=M Ý P. Set I3 to be any closed interval centered at 

xn3
 of lengthHI3L £

1

3
 such that I3 Ì I2 and xn2

Ï I3.

Continuing in this fashion, we obtain a nested sequence of closed intervals 

I1 É I2 É I3 É ... such that lengthHInL�0  as n�¥  and xk Î Im for all k < nm. By the 

Nested Interval Theorem, Ý
n=1

¥

In = 8x<  for some x Î R. Notice, however, that x is a limit 

point of P because it is the limit point of the center points of the intervals In. Thus, as P 

is closed, we must have x Î P. (ÞÜ)

This is a contradiction: x cannot be any of the xm, since m £ nm and xm Ï Im+1. 

Thus P  must be uncountable, as desired. à

Example:  

a) Although we are still lacking the means to prove it, it can be shown that if P is a 

nonempty perfect subset of HM , dL in which every Cauchy sequence converges, P must 

be an uncountable set. 

b) Let HM , dL be a discrete metric space. Suppose P Ì M  is not empty. Then P is not 

perfect; B1HxL = 8x< for any x Î P. Hence x cannot be a limit point of P.

What went wrong? Every Cauchy sequence in HM , dL must converge in HM , dL. Why don’t 

we have perfect sets other than Æ?

c) Let M = Q under the usual metric of R. Then P = @0, 1D Ý Q is perfect in Q. Notice, 

however, that P Ì Q and must therefore be countable. Does this contradict a)? Absolutely 

not! Lots of Cauchy sequences of elements of  Q fail to converge in Q.  Ù

Note: It appears that nonempty perfect subsets are rather large. One would expect these 

sets to occupy some space on the real number line, for instance. However, reality is 

stronger than intuition. It seems that perfect subsets of R can be so constructed as to 

include almost all of R and yet be so thin that they fail to contain a single interval, no 

matter how small this interval may be.

We will see shortly how this materializes but before we can present our argument, a few 

definitions will prove useful.

Definition: Let A be a subset of a metric space HM , dL. If x Î A and x is not a limit point 

of A, then x is called an isolated point of A.

**Remark: Note that with this definition, we say that a set is perfect if it is closed and has 

no isolated points.**

Definition: A set A is said to be dense in HM .dL (or, as some authors say, everywhere 

dense) if A = M . That is, every point of M  is either in A or is a limit point of A if A is 

dense in M .

Definition: A set A is said to be nowhere dense in HM , dL if HALo
= Æ.

Example:  

a) The sets Q and R\Q are dense subsets of R.

b) Let A = : 1

n
: n ³ 1>. Then A is nowhere dense in R, because A = A Ü 80< and HALo

= Æ. 

c) Let HM , dL be discrete. If A Ì M , then A is both a closed and an open subset of M . 

Thus, A = A and A = Ao. Thus, if A is not empty, A = A = HALo
¹ Æ. Hence, A is not 

nowhere dense in M . Notice, however, that the statement “not nowhere dense” is not 

equivalent to the phrase “dense”. In fact, the only dense subset of M  is M  itself. Every 

point of a discrete space is an isolated point. 

d) In general, “not nowhere dense” is not the same as “dense”. In R, the set A = H0, 1L is 

not dense because A = @0, 1D ¹ R. However, A is not nowhere dense, as 

HALo
= A = H0, 1L ¹ Æ . The term “nowhere dense” is an unfortunate choice of language 

that is sadly too common in the literature to avoid. We should think of nowhere dense 

sets as “thin” sets or sets that are far from having even a single neighborhood. 

e) While R is everywhere dense in itself, it is nowhere dense when it is considered as a 

subset of R
2 (why?). Ù

Example:  

Suppose that a special forces unit has been sent into a zombie-infested area to search for 

survivors. The progress of the operation is being monitored in a remote HQ (see fig)

    

If the red dots represent the positions of the special-forces soldiers and the black dots 

are positions of detected zombies, what can you say about the outcome of this operation? 

Solution:

Every point on the screen is either a zombie or a limit point of zombies. Thus, topologi-

cally speaking, the set of all zombies is dense in the set of points. Notice also that the set 

of all red points is nowhere dense; that is, all neighborhoods of the red points have been 

breached with no chance for their recovery. Sadly, the operation is a fiasco. All of our 

brave soldiers will soon join the ranks of the undead. Ù

Now we are finally ready to present the argument that we alluded to previous to the 

above definitions:

• Lemma 1:

Let E be a closed subset of HM , dL and EHiL be the set of all isolated points of E. Then 

E\EHiL is a closed subset of HM , dL. 

Proof:

Let 8xn<
n=1
¥ Ì E\EHiL be a sequence that converges to x Î M . To show that E\EHiL is closed, 

we must prove that x Î E\EHiL. Notice, however, that since E is closed, xn Ì x � x Î E. 

Furthermore, this means that x is a limit point of E so x is not an isolated point, i.e. 

x Ï EHiL. Hence it follows that x Î E\EHiL as desired.  à

• Lemma 2:

Let E be a closed subset of R. Then the set of all isolated points of E, EHiL, is at most 

countable.

Proof:

Every isolated point of E is contained in an open interval that has no other points of E. 

In other words, if x Î EHiL, then x Î Ix such that Ix Ý E = 8x< and Ix is open. Thus, 

EHiL Ì Ü
xÎEHiL

Ix where Ix Ý Iy = Æ if x ¹ y.

Since each interval contains a rational, this union is countable. This indicates that EHiL is 

also countable as each Ix contains only one point of EHiL.   à

• Theorem:

There exist perfect subsets of R that contain nearly all of R and yet fail to have even a 

single rational number. Such sets must be nowhere dense.

Proof:

Let Ε > 0. List all the rational numbers in a sequence 8rn<
n=1
¥  and put each rn at the center 

of an open interval In of lengthHInL =
Ε

2n .

If G = Ü
n=1

¥

In, then G is open and

   lengthHGL £ Ú
n=1

¥

lengthHInL = Ú
n=1

¥
Ε

2n = Ε .

Setting E = Gc, we see that E is a closed set whose size must be infinite. That is, 

lengthHEL = ¥. Thus, E must be uncountable. 

By lemma 1, E\EHiL is also a closed set and by lemma 2, E\EHiL must be uncountable 

(because we delete at most countably many points). Finally, observe that P = E\EHiL is a 

perfect subset of R. à

          THE CANTOR SET

Consider the process of successively removing “middle thirds” from the interval @0, 1D. 
    

           

We continue this process inductively. At the nth stage we construct In from In-1 by remov-

ing 2n-1 disjoint, open, “middle thirds” intervals from In-1, each of length 3-n; we will call 

this discarded set Jn. 

Thus, In is the union of 2n closed subintervals of In-1, and the complement of In in @0, 1D 
is J1 Ü ... Ü Jn . The Cantor set D is defined as the set of points that still remain at the end 

of this process, in other words, the “limit” of the sets In. 

More precisely, D = Ý
n=1

¥

In. 

It follows from the nested interval theorem that D ¹ Ø , but notice that D is at least count-

ably infinite. The endpoints of each In are in D:

  0, 1,
1

3
,

2

3
,

1

9
,

2

9
, ... Î D .

We will refer to these points as the endpoints of D, that is, all of the points in D of the 

form 
a

3n
 for some integers a and n. 

As we shall see presently, D is actually uncountable! This is more than a little surprising. 

Just try to imagine how terribly sparse the next few levels of the “middle thirds” diagram 

would look on the page. Adding even a few more levels defies the limits of typesetting! 

For good measure we will give two proofs that D is uncountable, the first being some-

what combinatorial. Notice that each subinterval of In-1 results in two subintervals of In 

(after discarding a middle third). We label these two new intervals L and R (for left and 

right) :

       

               

As we progress down through the levels of the diagram toward the Cantor set 

(somewhere far below), imagine that we “step down” from one level to the next by repeat-

edly choosing either a step to the left (landing on an L interval in the next level below) or 

a step to the right (landing on an R interval). At each stage we are only allowed to step 

down to a subinterval of the interval we are presently on – jumping across “gaps” is not 

allowed! Thus, each string of choices, LRLRRLLRLLLR… , describes a unique “path” 

from the top level I0 down to the bottom level D. 

The Cantor set, then, is quite literally the “dust” at the end of the trail. Said another way, 

each such “path” determines a unique sequence of nested subintervals, one from each 

level, whose intersection is a single point of D. Conversely, each point x Î D lies at the 

end of exactly one such path, because at any given level there is only one possible subin-

terval of In on our diagram, call it I
�

n , that contains x. The resulting sequence of intervals 

is clearly nested (why?). 

Thus, the Cantor set D is in one-to-one correspondence with the set of all paths, that is, 

the set of all sequences of L’s and R’s. Of course, any two choices would have done just 

as well, so we might also say that D is equivalent to the set of all sequences of 0’s and 1’s 

– a set we already know to be uncountable. 

Here is what this means: 

          cardHDL = 2À0 = cardH@0, 1DL .

Absolutely amazing! The Cantor set is just as “big” as @0, 1D and yet it strains the imagina-

tion to picture such a sparse set of points. Before we give our second proof that D is 

uncountable, let’s see why D is “small” (in at least one sense). We will show that D has 

“measure zero”; that is, the “measure” or “total length” of all of the intervals in its comple-

ment @0, 1D\D is 1. 

Here’s why: 

By induction, the total length of the 2n-1 disjoint intervals comprising Jn (the set we 

discard at the nth stage) is 
2n-1

3n
. 

So the total length of @0, 1D\D must be

Ú
n=1

¥
2n-1

3n
=

1

3
Ú
n=1

¥

J 2

3
N
n-1

=
1

3

1

1 -
2

3

= 1 .

We have discarded everything!? And left uncountably many points behind!? How 

bizarre! This simultaneous “bigness” and “smallness” is precisely what makes the Cantor 

set so intriguing.

Our second proof that D is uncountable is based on an equivalent characterization of D 

in terms of ternary (base 3) decimals. Recall that each x in @0, 1D can be written, in possi-

bly more than one way, as: x = 0. a1 a2 a3 … Hbase 3L, where each an = 0, 1, or 2. This 

three-way choice for decimal digits (base 3) corresponds to the three-way splitting of 

intervals that we saw earlier. 

To see this, let us consider a few specific examples. 

For instance, the three cases a1 = 0, 1, or 2 correspond to the three intervals @0, 1 � 3D,  
H1 � 3, 2 � 3L,  and @2 � 3, 1D :

            

There is some ambiguity at these endpoints:

 

   

but each of these ambiguous cases has at least one representation with a1 in the proper 

range. Next, the figure below shows the situation for I2 (but this time ignoring the dis-

carded intervals): 

             

Again, some confusion is possible at the endpoints:

             

We take these few examples as proof of the following theorem.

• Theorem: 

x Î D iff x can be written as Ú
n=1

¥
an

3n
, where each an is either 0 or 2. 

Thus the Cantor set consists of those points in @0, 1D having some base 3 decimal represen-

tation that excludes the digit 1. Knowing this we can list all sorts of elements of D. For 

example, 
1

4
Î D because 

1

4
= 0.020202 … Hbase 3L. 

The above theorem also leads to another proof that D is uncountable; or, rather, it gives 

us a new way of writing the old proof. The first proof used sequences of 0’s and 1’s, and 

now we find ourselves with sequences of 0’s and 2’s; the connection isn’t hard to guess.

• Corollary:

D is uncountable. In fact, D is equivalent to @0, 1D. 

Proof:

By altering our notation we can easily display a correspondence between D and @0, 1D. 

Each x Î D may be written x = Ú
n=1

¥
2 bn

3n
 , where bn = 0 or 1 , and now we define the Can-

tor function f : D�@0, 1D by

                f Ú
n=1

¥
2 bn

3n
= Ú

n=1

¥
bn

2n        (where bn = 0, 1)

  

That is, 

Now f  is clearly onto, and hence we have a second proof that D is uncountable (why?). 

But f  isn’t one-to-one; here’s why: 

           

The same phenomenon occurs at each pair of endpoints of any discarded “middle third” 

interval (i.e., a subinterval of Jn):

        

It is easy to see that f  is increasing; that is, if with x < y, then f HxL £ f H yL. We leave it as 

an exercise to check that f HxL = f H yL iff x and y are endpoints of a discarded “middle 

third” interval (see Exercise 26 on Carother’s ). Thus, f  is one-to-one except at the end-

points of D (a countable set), where it’s two-to-one. It follows that D is equivalent to 

@0, 1D. (How?) à
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Before  we start our discussion of perfect sets, let’s present a very important theorem, 

called the nested interval theorem, which is an essential tool that we’ll be using in the 

next few topics. 

Yet before presenting this theorem let’s make the following observation:

• Theorem:

A monotone, bounded sequence of real numbers converges in R.

Proof:

Let 8xn<
n=1
¥ Ì R be monotone and bounded. 

We first suppose that 8xn< is increasing (that is, xm £ xn whenever m < n). Now, since 8xn< 
is bounded, we may set x = sup

nÎN

HxnL (a real number). We will show that x = limit
n®¥

xn.

Let Ε > 0. Since x - Ε < x = sup
nÎN

HxnL, we must have xN > x - Ε for some N . But then, for 

any n ³ N , we have x - Ε < xN £ xn £ x. That is,  x - xn¤ < Ε " n ³ N . Consequently, 8xn< 
converges and x = sup

nÎN

HxnL = limit
n®¥

xn. 

Finally, if 8xn< is decreasing, consider the increasing sequence 8- xn<. from the first part 

of the proof, 8- xn< converges to sup
nÎN

H- xnL = - inf
nÎN

HxnL. It then follows that 8xn< converges 

to inf
nÎN

HxnL. à

• The Nested Interval Theorem:

If 8In<n=1
¥  is a sequence of closed, bounded, nonempty intervals in R with 

I1 � I2 � I3 � ..., 

then Ý
n=1

¥

In ¹ Æ. If, in addition, lengthHInL�0, then Ý
n=1

¥

In contains precisely one point.

Proof:

Write @an, bnD. Then In É In+1 means that an £ an+1 £ bn+1 £ bn " n. 

Thus,

     a = limit
n®¥

HanL = sup
nÎN

HanL and     b = limit
n®¥

HbnL = inf
nÎN

HbnL

both exist (as finite real numbers) and satisfy a £ b. Thus, we must have Ý
n=1

¥

In = @a, bD. 

Indeed, if x Î In " n, then an £ x £ bn " n, and hence a £ x £ b. Conversely, if a £ x £ b, 

then an £ x £ bn " n. That is, x Î In " n. Finally, if bn - an = lengthHInL�0, then a = b 

and so Ý
n=1

¥

In = 8a<.   à

(Alternate) Proof:  

  

Example:  

a) Note that it is essential that the intervals used in the nested interval theorem be both 

closed and bounded. 

Indeed, Ý
n=1

¥

@n, ¥L = Æ  and  Ý
n=1

¥

H0, 1 � nD = Æ .

b) Suppose that 8In< is a sequence of closed intervals with In É In+1 for all n and with 

lengthHInL�0  as  n�¥. If Ý
n=1

¥

In = 8x<, then any sequence of points 8xn<
n=1
¥ , with xn Î In 

for all n, must converge to x. Ù

                    PERFECT SETS

Definition:  A set P is a perfect set if it is empty or if it is a closed set and every point of 

P is a limit point of P. 

Example:  

a) The sets 

     • R     • H-¥, aD      • @a, ¥L  
as well as any closed and bounded intervals @a, bD (a < b), are perfect sets. 

b) The sets 

• Ha, bL • @a, bD Ü 8c< (b < c)    • Q   • R\Q

are not perfect sets. The sets Ha, bL, Q, and R\Q fail to be closed, even though every point 

in each of these sets is a limit point of the set. The set @a, bD Ü 8c< on the other hand, fails 

to be a perfect set because c is not a limit point of @a, bD Ü 8c<.  

c) Let 8xn<
n=1
¥  be convergent in HM , dL, that is, xn Ì

d

x in M . Then the set 8xn : n ³ 1< Ü 8x< 

is not perfect. Although the set is closed, only x is a limit point.  Ù

Notice that in all of the above listed examples of perfect subsets of R, the perfect sets 

turned out to be uncountable sets. The next theorem shows that this must always be the 

case.

• Theorem:

Let P be a perfect subset of R. Then P is uncountable. 

Proof:

Suppose to the contrary that P = 8x1, x2, ..., xn, ...< is countable. Let I1 be any closed 

interval centered at x1 of lengthHI1L £ 1. Then, since x1 Î P and P is perfect, it follows 

that x1 is a limit point of P. In particular, HI1\8x1<L Ý P ¹ Æ.

Let n2 be the smallest integer for which xn2
Î HI1\8x1<L Ý P and let I2 be any closed inter-

val centered at xn2
 of lengthHI2L £

1

2
 such that I2 Ì I1 and x1 Ï I2. Observe that by the 

minimality of n2, xk Ï I2  for any k < n2. 

Since xn2
Î P, it is a limit point of P and therefore II2\9xn2

=M Ý P ¹ Æ. Now let n3 be the 

smallest integer for which xn3
Î II2\9xn2

=M Ý P. Set I3 to be any closed interval centered at 

xn3
 of lengthHI3L £

1

3
 such that I3 Ì I2 and xn2

Ï I3.

Continuing in this fashion, we obtain a nested sequence of closed intervals 

I1 É I2 É I3 É ... such that lengthHInL�0  as n�¥  and xk Î Im for all k < nm. By the 

Nested Interval Theorem, Ý
n=1

¥

In = 8x<  for some x Î R. Notice, however, that x is a limit 

point of P because it is the limit point of the center points of the intervals In. Thus, as P 

is closed, we must have x Î P. (ÞÜ)

This is a contradiction: x cannot be any of the xm, since m £ nm and xm Ï Im+1. 

Thus P  must be uncountable, as desired. à

Example:  

a) Although we are still lacking the means to prove it, it can be shown that if P is a 

nonempty perfect subset of HM , dL in which every Cauchy sequence converges, P must 

be an uncountable set. 

b) Let HM , dL be a discrete metric space. Suppose P Ì M  is not empty. Then P is not 

perfect; B1HxL = 8x< for any x Î P. Hence x cannot be a limit point of P.

What went wrong? Every Cauchy sequence in HM , dL must converge in HM , dL. Why don’t 

we have perfect sets other than Æ?

c) Let M = Q under the usual metric of R. Then P = @0, 1D Ý Q is perfect in Q. Notice, 

however, that P Ì Q and must therefore be countable. Does this contradict a)? Absolutely 

not! Lots of Cauchy sequences of elements of  Q fail to converge in Q.  Ù

Note: It appears that nonempty perfect subsets are rather large. One would expect these 

sets to occupy some space on the real number line, for instance. However, reality is 

stronger than intuition. It seems that perfect subsets of R can be so constructed as to 

include almost all of R and yet be so thin that they fail to contain a single interval, no 

matter how small this interval may be.

We will see shortly how this materializes but before we can present our argument, a few 

definitions will prove useful.

Definition: Let A be a subset of a metric space HM , dL. If x Î A and x is not a limit point 

of A, then x is called an isolated point of A.

**Remark: Note that with this definition, we say that a set is perfect if it is closed and has 

no isolated points.**

Definition: A set A is said to be dense in HM .dL (or, as some authors say, everywhere 

dense) if A = M . That is, every point of M  is either in A or is a limit point of A if A is 

dense in M .

Definition: A set A is said to be nowhere dense in HM , dL if HALo
= Æ.

Example:  

a) The sets Q and R\Q are dense subsets of R.

b) Let A = : 1

n
: n ³ 1>. Then A is nowhere dense in R, because A = A Ü 80< and HALo

= Æ. 

c) Let HM , dL be discrete. If A Ì M , then A is both a closed and an open subset of M . 

Thus, A = A and A = Ao. Thus, if A is not empty, A = A = HALo
¹ Æ. Hence, A is not 

nowhere dense in M . Notice, however, that the statement “not nowhere dense” is not 

equivalent to the phrase “dense”. In fact, the only dense subset of M  is M  itself. Every 

point of a discrete space is an isolated point. 

d) In general, “not nowhere dense” is not the same as “dense”. In R, the set A = H0, 1L is 

not dense because A = @0, 1D ¹ R. However, A is not nowhere dense, as 

HALo
= A = H0, 1L ¹ Æ . The term “nowhere dense” is an unfortunate choice of language 

that is sadly too common in the literature to avoid. We should think of nowhere dense 

sets as “thin” sets or sets that are far from having even a single neighborhood. 

e) While R is everywhere dense in itself, it is nowhere dense when it is considered as a 

subset of R
2 (why?). Ù

Example:  

Suppose that a special forces unit has been sent into a zombie-infested area to search for 

survivors. The progress of the operation is being monitored in a remote HQ (see fig)

    

If the red dots represent the positions of the special-forces soldiers and the black dots 

are positions of detected zombies, what can you say about the outcome of this operation? 

Solution:

Every point on the screen is either a zombie or a limit point of zombies. Thus, topologi-

cally speaking, the set of all zombies is dense in the set of points. Notice also that the set 

of all red points is nowhere dense; that is, all neighborhoods of the red points have been 

breached with no chance for their recovery. Sadly, the operation is a fiasco. All of our 

brave soldiers will soon join the ranks of the undead. Ù

Now we are finally ready to present the argument that we alluded to previous to the 

above definitions:

• Lemma 1:

Let E be a closed subset of HM , dL and EHiL be the set of all isolated points of E. Then 

E\EHiL is a closed subset of HM , dL. 

Proof:

Let 8xn<
n=1
¥ Ì E\EHiL be a sequence that converges to x Î M . To show that E\EHiL is closed, 

we must prove that x Î E\EHiL. Notice, however, that since E is closed, xn Ì x � x Î E. 

Furthermore, this means that x is a limit point of E so x is not an isolated point, i.e. 

x Ï EHiL. Hence it follows that x Î E\EHiL as desired.  à

• Lemma 2:

Let E be a closed subset of R. Then the set of all isolated points of E, EHiL, is at most 

countable.

Proof:

Every isolated point of E is contained in an open interval that has no other points of E. 

In other words, if x Î EHiL, then x Î Ix such that Ix Ý E = 8x< and Ix is open. Thus, 

EHiL Ì Ü
xÎEHiL

Ix where Ix Ý Iy = Æ if x ¹ y.

Since each interval contains a rational, this union is countable. This indicates that EHiL is 

also countable as each Ix contains only one point of EHiL.   à

• Theorem:

There exist perfect subsets of R that contain nearly all of R and yet fail to have even a 

single rational number. Such sets must be nowhere dense.

Proof:

Let Ε > 0. List all the rational numbers in a sequence 8rn<
n=1
¥  and put each rn at the center 

of an open interval In of lengthHInL =
Ε

2n .

If G = Ü
n=1

¥

In, then G is open and

   lengthHGL £ Ú
n=1

¥

lengthHInL = Ú
n=1

¥
Ε

2n = Ε .

Setting E = Gc, we see that E is a closed set whose size must be infinite. That is, 

lengthHEL = ¥. Thus, E must be uncountable. 

By lemma 1, E\EHiL is also a closed set and by lemma 2, E\EHiL must be uncountable 

(because we delete at most countably many points). Finally, observe that P = E\EHiL is a 

perfect subset of R. à

          THE CANTOR SET

Consider the process of successively removing “middle thirds” from the interval @0, 1D. 
    

           

We continue this process inductively. At the nth stage we construct In from In-1 by remov-

ing 2n-1 disjoint, open, “middle thirds” intervals from In-1, each of length 3-n; we will call 

this discarded set Jn. 

Thus, In is the union of 2n closed subintervals of In-1, and the complement of In in @0, 1D 
is J1 Ü ... Ü Jn . The Cantor set D is defined as the set of points that still remain at the end 

of this process, in other words, the “limit” of the sets In. 

More precisely, D = Ý
n=1

¥

In. 

It follows from the nested interval theorem that D ¹ Ø , but notice that D is at least count-

ably infinite. The endpoints of each In are in D:

  0, 1,
1

3
,

2

3
,

1

9
,

2

9
, ... Î D .

We will refer to these points as the endpoints of D, that is, all of the points in D of the 

form 
a

3n
 for some integers a and n. 

As we shall see presently, D is actually uncountable! This is more than a little surprising. 

Just try to imagine how terribly sparse the next few levels of the “middle thirds” diagram 

would look on the page. Adding even a few more levels defies the limits of typesetting! 

For good measure we will give two proofs that D is uncountable, the first being some-

what combinatorial. Notice that each subinterval of In-1 results in two subintervals of In 

(after discarding a middle third). We label these two new intervals L and R (for left and 

right) :

       

               

As we progress down through the levels of the diagram toward the Cantor set 

(somewhere far below), imagine that we “step down” from one level to the next by repeat-

edly choosing either a step to the left (landing on an L interval in the next level below) or 

a step to the right (landing on an R interval). At each stage we are only allowed to step 

down to a subinterval of the interval we are presently on – jumping across “gaps” is not 

allowed! Thus, each string of choices, LRLRRLLRLLLR… , describes a unique “path” 

from the top level I0 down to the bottom level D. 

The Cantor set, then, is quite literally the “dust” at the end of the trail. Said another way, 

each such “path” determines a unique sequence of nested subintervals, one from each 

level, whose intersection is a single point of D. Conversely, each point x Î D lies at the 

end of exactly one such path, because at any given level there is only one possible subin-

terval of In on our diagram, call it I
�

n , that contains x. The resulting sequence of intervals 

is clearly nested (why?). 

Thus, the Cantor set D is in one-to-one correspondence with the set of all paths, that is, 

the set of all sequences of L’s and R’s. Of course, any two choices would have done just 

as well, so we might also say that D is equivalent to the set of all sequences of 0’s and 1’s 

– a set we already know to be uncountable. 

Here is what this means: 

          cardHDL = 2À0 = cardH@0, 1DL .

Absolutely amazing! The Cantor set is just as “big” as @0, 1D and yet it strains the imagina-

tion to picture such a sparse set of points. Before we give our second proof that D is 

uncountable, let’s see why D is “small” (in at least one sense). We will show that D has 

“measure zero”; that is, the “measure” or “total length” of all of the intervals in its comple-

ment @0, 1D\D is 1. 

Here’s why: 

By induction, the total length of the 2n-1 disjoint intervals comprising Jn (the set we 

discard at the nth stage) is 
2n-1

3n
. 

So the total length of @0, 1D\D must be

Ú
n=1

¥
2n-1

3n
=

1

3
Ú
n=1

¥

J 2

3
N
n-1

=
1

3

1

1 -
2

3

= 1 .

We have discarded everything!? And left uncountably many points behind!? How 

bizarre! This simultaneous “bigness” and “smallness” is precisely what makes the Cantor 

set so intriguing.

Our second proof that D is uncountable is based on an equivalent characterization of D 

in terms of ternary (base 3) decimals. Recall that each x in @0, 1D can be written, in possi-

bly more than one way, as: x = 0. a1 a2 a3 … Hbase 3L, where each an = 0, 1, or 2. This 

three-way choice for decimal digits (base 3) corresponds to the three-way splitting of 

intervals that we saw earlier. 

To see this, let us consider a few specific examples. 

For instance, the three cases a1 = 0, 1, or 2 correspond to the three intervals @0, 1 � 3D,  
H1 � 3, 2 � 3L,  and @2 � 3, 1D :

            

There is some ambiguity at these endpoints:

 

   

but each of these ambiguous cases has at least one representation with a1 in the proper 

range. Next, the figure below shows the situation for I2 (but this time ignoring the dis-

carded intervals): 

             

Again, some confusion is possible at the endpoints:

             

We take these few examples as proof of the following theorem.

• Theorem: 

x Î D iff x can be written as Ú
n=1

¥
an

3n
, where each an is either 0 or 2. 

Thus the Cantor set consists of those points in @0, 1D having some base 3 decimal represen-

tation that excludes the digit 1. Knowing this we can list all sorts of elements of D. For 

example, 
1

4
Î D because 

1

4
= 0.020202 … Hbase 3L. 

The above theorem also leads to another proof that D is uncountable; or, rather, it gives 

us a new way of writing the old proof. The first proof used sequences of 0’s and 1’s, and 

now we find ourselves with sequences of 0’s and 2’s; the connection isn’t hard to guess.

• Corollary:

D is uncountable. In fact, D is equivalent to @0, 1D. 

Proof:

By altering our notation we can easily display a correspondence between D and @0, 1D. 

Each x Î D may be written x = Ú
n=1

¥
2 bn

3n
 , where bn = 0 or 1 , and now we define the Can-

tor function f : D�@0, 1D by

                f Ú
n=1

¥
2 bn

3n
= Ú

n=1

¥
bn

2n        (where bn = 0, 1)

  

That is, 

Now f  is clearly onto, and hence we have a second proof that D is uncountable (why?). 

But f  isn’t one-to-one; here’s why: 

           

The same phenomenon occurs at each pair of endpoints of any discarded “middle third” 

interval (i.e., a subinterval of Jn):

        

It is easy to see that f  is increasing; that is, if with x < y, then f HxL £ f H yL. We leave it as 

an exercise to check that f HxL = f H yL iff x and y are endpoints of a discarded “middle 

third” interval (see Exercise 26 on Carother’s ). Thus, f  is one-to-one except at the end-

points of D (a countable set), where it’s two-to-one. It follows that D is equivalent to 

@0, 1D. (How?) à
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Before  we start our discussion of perfect sets, let’s present a very important theorem, 

called the nested interval theorem, which is an essential tool that we’ll be using in the 

next few topics. 

Yet before presenting this theorem let’s make the following observation:

• Theorem:

A monotone, bounded sequence of real numbers converges in R.

Proof:

Let 8xn<
n=1
¥ Ì R be monotone and bounded. 

We first suppose that 8xn< is increasing (that is, xm £ xn whenever m < n). Now, since 8xn< 
is bounded, we may set x = sup

nÎN

HxnL (a real number). We will show that x = limit
n®¥

xn.

Let Ε > 0. Since x - Ε < x = sup
nÎN

HxnL, we must have xN > x - Ε for some N . But then, for 

any n ³ N , we have x - Ε < xN £ xn £ x. That is,  x - xn¤ < Ε " n ³ N . Consequently, 8xn< 
converges and x = sup

nÎN

HxnL = limit
n®¥

xn. 

Finally, if 8xn< is decreasing, consider the increasing sequence 8- xn<. from the first part 

of the proof, 8- xn< converges to sup
nÎN

H- xnL = - inf
nÎN

HxnL. It then follows that 8xn< converges 

to inf
nÎN

HxnL. à

• The Nested Interval Theorem:

If 8In<n=1
¥  is a sequence of closed, bounded, nonempty intervals in R with 

I1 � I2 � I3 � ..., 

then Ý
n=1

¥

In ¹ Æ. If, in addition, lengthHInL�0, then Ý
n=1

¥

In contains precisely one point.

Proof:

Write @an, bnD. Then In É In+1 means that an £ an+1 £ bn+1 £ bn " n. 

Thus,

     a = limit
n®¥

HanL = sup
nÎN

HanL and     b = limit
n®¥

HbnL = inf
nÎN

HbnL

both exist (as finite real numbers) and satisfy a £ b. Thus, we must have Ý
n=1

¥

In = @a, bD. 

Indeed, if x Î In " n, then an £ x £ bn " n, and hence a £ x £ b. Conversely, if a £ x £ b, 

then an £ x £ bn " n. That is, x Î In " n. Finally, if bn - an = lengthHInL�0, then a = b 

and so Ý
n=1

¥

In = 8a<.   à

(Alternate) Proof:  

  

Example:  

a) Note that it is essential that the intervals used in the nested interval theorem be both 

closed and bounded. 

Indeed, Ý
n=1

¥

@n, ¥L = Æ  and  Ý
n=1

¥

H0, 1 � nD = Æ .

b) Suppose that 8In< is a sequence of closed intervals with In É In+1 for all n and with 

lengthHInL�0  as  n�¥. If Ý
n=1

¥

In = 8x<, then any sequence of points 8xn<
n=1
¥ , with xn Î In 

for all n, must converge to x. Ù

                    PERFECT SETS

Definition:  A set P is a perfect set if it is empty or if it is a closed set and every point of 

P is a limit point of P. 

Example:  

a) The sets 

     • R     • H-¥, aD      • @a, ¥L  
as well as any closed and bounded intervals @a, bD (a < b), are perfect sets. 

b) The sets 

• Ha, bL • @a, bD Ü 8c< (b < c)    • Q   • R\Q

are not perfect sets. The sets Ha, bL, Q, and R\Q fail to be closed, even though every point 

in each of these sets is a limit point of the set. The set @a, bD Ü 8c< on the other hand, fails 

to be a perfect set because c is not a limit point of @a, bD Ü 8c<.  

c) Let 8xn<
n=1
¥  be convergent in HM , dL, that is, xn Ì

d

x in M . Then the set 8xn : n ³ 1< Ü 8x< 

is not perfect. Although the set is closed, only x is a limit point.  Ù

Notice that in all of the above listed examples of perfect subsets of R, the perfect sets 

turned out to be uncountable sets. The next theorem shows that this must always be the 

case.

• Theorem:

Let P be a perfect subset of R. Then P is uncountable. 

Proof:

Suppose to the contrary that P = 8x1, x2, ..., xn, ...< is countable. Let I1 be any closed 

interval centered at x1 of lengthHI1L £ 1. Then, since x1 Î P and P is perfect, it follows 

that x1 is a limit point of P. In particular, HI1\8x1<L Ý P ¹ Æ.

Let n2 be the smallest integer for which xn2
Î HI1\8x1<L Ý P and let I2 be any closed inter-

val centered at xn2
 of lengthHI2L £

1

2
 such that I2 Ì I1 and x1 Ï I2. Observe that by the 

minimality of n2, xk Ï I2  for any k < n2. 

Since xn2
Î P, it is a limit point of P and therefore II2\9xn2

=M Ý P ¹ Æ. Now let n3 be the 

smallest integer for which xn3
Î II2\9xn2

=M Ý P. Set I3 to be any closed interval centered at 

xn3
 of lengthHI3L £

1

3
 such that I3 Ì I2 and xn2

Ï I3.

Continuing in this fashion, we obtain a nested sequence of closed intervals 

I1 É I2 É I3 É ... such that lengthHInL�0  as n�¥  and xk Î Im for all k < nm. By the 

Nested Interval Theorem, Ý
n=1

¥

In = 8x<  for some x Î R. Notice, however, that x is a limit 

point of P because it is the limit point of the center points of the intervals In. Thus, as P 

is closed, we must have x Î P. (ÞÜ)

This is a contradiction: x cannot be any of the xm, since m £ nm and xm Ï Im+1. 

Thus P  must be uncountable, as desired. à

Example:  

a) Although we are still lacking the means to prove it, it can be shown that if P is a 

nonempty perfect subset of HM , dL in which every Cauchy sequence converges, P must 

be an uncountable set. 

b) Let HM , dL be a discrete metric space. Suppose P Ì M  is not empty. Then P is not 

perfect; B1HxL = 8x< for any x Î P. Hence x cannot be a limit point of P.

What went wrong? Every Cauchy sequence in HM , dL must converge in HM , dL. Why don’t 

we have perfect sets other than Æ?

c) Let M = Q under the usual metric of R. Then P = @0, 1D Ý Q is perfect in Q. Notice, 

however, that P Ì Q and must therefore be countable. Does this contradict a)? Absolutely 

not! Lots of Cauchy sequences of elements of  Q fail to converge in Q.  Ù

Note: It appears that nonempty perfect subsets are rather large. One would expect these 

sets to occupy some space on the real number line, for instance. However, reality is 

stronger than intuition. It seems that perfect subsets of R can be so constructed as to 

include almost all of R and yet be so thin that they fail to contain a single interval, no 

matter how small this interval may be.

We will see shortly how this materializes but before we can present our argument, a few 

definitions will prove useful.

Definition: Let A be a subset of a metric space HM , dL. If x Î A and x is not a limit point 

of A, then x is called an isolated point of A.

**Remark: Note that with this definition, we say that a set is perfect if it is closed and has 

no isolated points.**

Definition: A set A is said to be dense in HM .dL (or, as some authors say, everywhere 

dense) if A = M . That is, every point of M  is either in A or is a limit point of A if A is 

dense in M .

Definition: A set A is said to be nowhere dense in HM , dL if HALo
= Æ.

Example:  

a) The sets Q and R\Q are dense subsets of R.

b) Let A = : 1

n
: n ³ 1>. Then A is nowhere dense in R, because A = A Ü 80< and HALo

= Æ. 

c) Let HM , dL be discrete. If A Ì M , then A is both a closed and an open subset of M . 

Thus, A = A and A = Ao. Thus, if A is not empty, A = A = HALo
¹ Æ. Hence, A is not 

nowhere dense in M . Notice, however, that the statement “not nowhere dense” is not 

equivalent to the phrase “dense”. In fact, the only dense subset of M  is M  itself. Every 

point of a discrete space is an isolated point. 

d) In general, “not nowhere dense” is not the same as “dense”. In R, the set A = H0, 1L is 

not dense because A = @0, 1D ¹ R. However, A is not nowhere dense, as 

HALo
= A = H0, 1L ¹ Æ . The term “nowhere dense” is an unfortunate choice of language 

that is sadly too common in the literature to avoid. We should think of nowhere dense 

sets as “thin” sets or sets that are far from having even a single neighborhood. 

e) While R is everywhere dense in itself, it is nowhere dense when it is considered as a 

subset of R
2 (why?). Ù

Example:  

Suppose that a special forces unit has been sent into a zombie-infested area to search for 

survivors. The progress of the operation is being monitored in a remote HQ (see fig)

    

If the red dots represent the positions of the special-forces soldiers and the black dots 

are positions of detected zombies, what can you say about the outcome of this operation? 

Solution:

Every point on the screen is either a zombie or a limit point of zombies. Thus, topologi-

cally speaking, the set of all zombies is dense in the set of points. Notice also that the set 

of all red points is nowhere dense; that is, all neighborhoods of the red points have been 

breached with no chance for their recovery. Sadly, the operation is a fiasco. All of our 

brave soldiers will soon join the ranks of the undead. Ù

Now we are finally ready to present the argument that we alluded to previous to the 

above definitions:

• Lemma 1:

Let E be a closed subset of HM , dL and EHiL be the set of all isolated points of E. Then 

E\EHiL is a closed subset of HM , dL. 

Proof:

Let 8xn<
n=1
¥ Ì E\EHiL be a sequence that converges to x Î M . To show that E\EHiL is closed, 

we must prove that x Î E\EHiL. Notice, however, that since E is closed, xn Ì x � x Î E. 

Furthermore, this means that x is a limit point of E so x is not an isolated point, i.e. 

x Ï EHiL. Hence it follows that x Î E\EHiL as desired.  à

• Lemma 2:

Let E be a closed subset of R. Then the set of all isolated points of E, EHiL, is at most 

countable.

Proof:

Every isolated point of E is contained in an open interval that has no other points of E. 

In other words, if x Î EHiL, then x Î Ix such that Ix Ý E = 8x< and Ix is open. Thus, 

EHiL Ì Ü
xÎEHiL

Ix where Ix Ý Iy = Æ if x ¹ y.

Since each interval contains a rational, this union is countable. This indicates that EHiL is 

also countable as each Ix contains only one point of EHiL.   à

• Theorem:

There exist perfect subsets of R that contain nearly all of R and yet fail to have even a 

single rational number. Such sets must be nowhere dense.

Proof:

Let Ε > 0. List all the rational numbers in a sequence 8rn<
n=1
¥  and put each rn at the center 

of an open interval In of lengthHInL =
Ε

2n .

If G = Ü
n=1

¥

In, then G is open and

   lengthHGL £ Ú
n=1

¥

lengthHInL = Ú
n=1

¥
Ε

2n = Ε .

Setting E = Gc, we see that E is a closed set whose size must be infinite. That is, 

lengthHEL = ¥. Thus, E must be uncountable. 

By lemma 1, E\EHiL is also a closed set and by lemma 2, E\EHiL must be uncountable 

(because we delete at most countably many points). Finally, observe that P = E\EHiL is a 

perfect subset of R. à

          THE CANTOR SET

Consider the process of successively removing “middle thirds” from the interval @0, 1D. 
    

           

We continue this process inductively. At the nth stage we construct In from In-1 by remov-

ing 2n-1 disjoint, open, “middle thirds” intervals from In-1, each of length 3-n; we will call 

this discarded set Jn. 

Thus, In is the union of 2n closed subintervals of In-1, and the complement of In in @0, 1D 
is J1 Ü ... Ü Jn . The Cantor set D is defined as the set of points that still remain at the end 

of this process, in other words, the “limit” of the sets In. 

More precisely, D = Ý
n=1

¥

In. 

It follows from the nested interval theorem that D ¹ Ø , but notice that D is at least count-

ably infinite. The endpoints of each In are in D:

  0, 1,
1

3
,

2

3
,

1

9
,

2

9
, ... Î D .

We will refer to these points as the endpoints of D, that is, all of the points in D of the 

form 
a

3n
 for some integers a and n. 

As we shall see presently, D is actually uncountable! This is more than a little surprising. 

Just try to imagine how terribly sparse the next few levels of the “middle thirds” diagram 

would look on the page. Adding even a few more levels defies the limits of typesetting! 

For good measure we will give two proofs that D is uncountable, the first being some-

what combinatorial. Notice that each subinterval of In-1 results in two subintervals of In 

(after discarding a middle third). We label these two new intervals L and R (for left and 

right) :

       

               

As we progress down through the levels of the diagram toward the Cantor set 

(somewhere far below), imagine that we “step down” from one level to the next by repeat-

edly choosing either a step to the left (landing on an L interval in the next level below) or 

a step to the right (landing on an R interval). At each stage we are only allowed to step 

down to a subinterval of the interval we are presently on – jumping across “gaps” is not 

allowed! Thus, each string of choices, LRLRRLLRLLLR… , describes a unique “path” 

from the top level I0 down to the bottom level D. 

The Cantor set, then, is quite literally the “dust” at the end of the trail. Said another way, 

each such “path” determines a unique sequence of nested subintervals, one from each 

level, whose intersection is a single point of D. Conversely, each point x Î D lies at the 

end of exactly one such path, because at any given level there is only one possible subin-

terval of In on our diagram, call it I
�

n , that contains x. The resulting sequence of intervals 

is clearly nested (why?). 

Thus, the Cantor set D is in one-to-one correspondence with the set of all paths, that is, 

the set of all sequences of L’s and R’s. Of course, any two choices would have done just 

as well, so we might also say that D is equivalent to the set of all sequences of 0’s and 1’s 

– a set we already know to be uncountable. 

Here is what this means: 

          cardHDL = 2À0 = cardH@0, 1DL .

Absolutely amazing! The Cantor set is just as “big” as @0, 1D and yet it strains the imagina-

tion to picture such a sparse set of points. Before we give our second proof that D is 

uncountable, let’s see why D is “small” (in at least one sense). We will show that D has 

“measure zero”; that is, the “measure” or “total length” of all of the intervals in its comple-

ment @0, 1D\D is 1. 

Here’s why: 

By induction, the total length of the 2n-1 disjoint intervals comprising Jn (the set we 

discard at the nth stage) is 
2n-1

3n
. 

So the total length of @0, 1D\D must be

Ú
n=1

¥
2n-1

3n
=

1

3
Ú
n=1

¥

J 2

3
N
n-1

=
1

3

1

1 -
2

3

= 1 .

We have discarded everything!? And left uncountably many points behind!? How 

bizarre! This simultaneous “bigness” and “smallness” is precisely what makes the Cantor 

set so intriguing.

Our second proof that D is uncountable is based on an equivalent characterization of D 

in terms of ternary (base 3) decimals. Recall that each x in @0, 1D can be written, in possi-

bly more than one way, as: x = 0. a1 a2 a3 … Hbase 3L, where each an = 0, 1, or 2. This 

three-way choice for decimal digits (base 3) corresponds to the three-way splitting of 

intervals that we saw earlier. 

To see this, let us consider a few specific examples. 

For instance, the three cases a1 = 0, 1, or 2 correspond to the three intervals @0, 1 � 3D,  
H1 � 3, 2 � 3L,  and @2 � 3, 1D :

            

There is some ambiguity at these endpoints:

 

   

but each of these ambiguous cases has at least one representation with a1 in the proper 

range. Next, the figure below shows the situation for I2 (but this time ignoring the dis-

carded intervals): 

             

Again, some confusion is possible at the endpoints:

             

We take these few examples as proof of the following theorem.

• Theorem: 

x Î D iff x can be written as Ú
n=1

¥
an

3n
, where each an is either 0 or 2. 

Thus the Cantor set consists of those points in @0, 1D having some base 3 decimal represen-

tation that excludes the digit 1. Knowing this we can list all sorts of elements of D. For 

example, 
1

4
Î D because 

1

4
= 0.020202 … Hbase 3L. 

The above theorem also leads to another proof that D is uncountable; or, rather, it gives 

us a new way of writing the old proof. The first proof used sequences of 0’s and 1’s, and 

now we find ourselves with sequences of 0’s and 2’s; the connection isn’t hard to guess.

• Corollary:

D is uncountable. In fact, D is equivalent to @0, 1D. 

Proof:

By altering our notation we can easily display a correspondence between D and @0, 1D. 

Each x Î D may be written x = Ú
n=1

¥
2 bn

3n
 , where bn = 0 or 1 , and now we define the Can-

tor function f : D�@0, 1D by

                f Ú
n=1

¥
2 bn

3n
= Ú

n=1

¥
bn

2n        (where bn = 0, 1)

  

That is, 

Now f  is clearly onto, and hence we have a second proof that D is uncountable (why?). 

But f  isn’t one-to-one; here’s why: 

           

The same phenomenon occurs at each pair of endpoints of any discarded “middle third” 

interval (i.e., a subinterval of Jn):

        

It is easy to see that f  is increasing; that is, if with x < y, then f HxL £ f H yL. We leave it as 

an exercise to check that f HxL = f H yL iff x and y are endpoints of a discarded “middle 

third” interval (see Exercise 26 on Carother’s ). Thus, f  is one-to-one except at the end-

points of D (a countable set), where it’s two-to-one. It follows that D is equivalent to 

@0, 1D. (How?) à
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Before  we start our discussion of perfect sets, let’s present a very important theorem, 

called the nested interval theorem, which is an essential tool that we’ll be using in the 

next few topics. 

Yet before presenting this theorem let’s make the following observation:

• Theorem:

A monotone, bounded sequence of real numbers converges in R.

Proof:

Let 8xn<
n=1
¥ Ì R be monotone and bounded. 

We first suppose that 8xn< is increasing (that is, xm £ xn whenever m < n). Now, since 8xn< 
is bounded, we may set x = sup

nÎN

HxnL (a real number). We will show that x = limit
n®¥

xn.

Let Ε > 0. Since x - Ε < x = sup
nÎN

HxnL, we must have xN > x - Ε for some N . But then, for 

any n ³ N , we have x - Ε < xN £ xn £ x. That is,  x - xn¤ < Ε " n ³ N . Consequently, 8xn< 
converges and x = sup

nÎN

HxnL = limit
n®¥

xn. 

Finally, if 8xn< is decreasing, consider the increasing sequence 8- xn<. from the first part 

of the proof, 8- xn< converges to sup
nÎN

H- xnL = - inf
nÎN

HxnL. It then follows that 8xn< converges 

to inf
nÎN

HxnL. à

• The Nested Interval Theorem:

If 8In<n=1
¥  is a sequence of closed, bounded, nonempty intervals in R with 

I1 � I2 � I3 � ..., 

then Ý
n=1

¥

In ¹ Æ. If, in addition, lengthHInL�0, then Ý
n=1

¥

In contains precisely one point.

Proof:

Write @an, bnD. Then In É In+1 means that an £ an+1 £ bn+1 £ bn " n. 

Thus,

     a = limit
n®¥

HanL = sup
nÎN

HanL and     b = limit
n®¥

HbnL = inf
nÎN

HbnL

both exist (as finite real numbers) and satisfy a £ b. Thus, we must have Ý
n=1

¥

In = @a, bD. 

Indeed, if x Î In " n, then an £ x £ bn " n, and hence a £ x £ b. Conversely, if a £ x £ b, 

then an £ x £ bn " n. That is, x Î In " n. Finally, if bn - an = lengthHInL�0, then a = b 

and so Ý
n=1

¥

In = 8a<.   à

(Alternate) Proof:  

  

Example:  

a) Note that it is essential that the intervals used in the nested interval theorem be both 

closed and bounded. 

Indeed, Ý
n=1

¥

@n, ¥L = Æ  and  Ý
n=1

¥

H0, 1 � nD = Æ .

b) Suppose that 8In< is a sequence of closed intervals with In É In+1 for all n and with 

lengthHInL�0  as  n�¥. If Ý
n=1

¥

In = 8x<, then any sequence of points 8xn<
n=1
¥ , with xn Î In 

for all n, must converge to x. Ù

                    PERFECT SETS

Definition:  A set P is a perfect set if it is empty or if it is a closed set and every point of 

P is a limit point of P. 

Example:  

a) The sets 

     • R     • H-¥, aD      • @a, ¥L  
as well as any closed and bounded intervals @a, bD (a < b), are perfect sets. 

b) The sets 

• Ha, bL • @a, bD Ü 8c< (b < c)    • Q   • R\Q

are not perfect sets. The sets Ha, bL, Q, and R\Q fail to be closed, even though every point 

in each of these sets is a limit point of the set. The set @a, bD Ü 8c< on the other hand, fails 

to be a perfect set because c is not a limit point of @a, bD Ü 8c<.  

c) Let 8xn<
n=1
¥  be convergent in HM , dL, that is, xn Ì

d

x in M . Then the set 8xn : n ³ 1< Ü 8x< 

is not perfect. Although the set is closed, only x is a limit point.  Ù

Notice that in all of the above listed examples of perfect subsets of R, the perfect sets 

turned out to be uncountable sets. The next theorem shows that this must always be the 

case.

• Theorem:

Let P be a perfect subset of R. Then P is uncountable. 

Proof:

Suppose to the contrary that P = 8x1, x2, ..., xn, ...< is countable. Let I1 be any closed 

interval centered at x1 of lengthHI1L £ 1. Then, since x1 Î P and P is perfect, it follows 

that x1 is a limit point of P. In particular, HI1\8x1<L Ý P ¹ Æ.

Let n2 be the smallest integer for which xn2
Î HI1\8x1<L Ý P and let I2 be any closed inter-

val centered at xn2
 of lengthHI2L £

1

2
 such that I2 Ì I1 and x1 Ï I2. Observe that by the 

minimality of n2, xk Ï I2  for any k < n2. 

Since xn2
Î P, it is a limit point of P and therefore II2\9xn2

=M Ý P ¹ Æ. Now let n3 be the 

smallest integer for which xn3
Î II2\9xn2

=M Ý P. Set I3 to be any closed interval centered at 

xn3
 of lengthHI3L £

1

3
 such that I3 Ì I2 and xn2

Ï I3.

Continuing in this fashion, we obtain a nested sequence of closed intervals 

I1 É I2 É I3 É ... such that lengthHInL�0  as n�¥  and xk Î Im for all k < nm. By the 

Nested Interval Theorem, Ý
n=1

¥

In = 8x<  for some x Î R. Notice, however, that x is a limit 

point of P because it is the limit point of the center points of the intervals In. Thus, as P 

is closed, we must have x Î P. (ÞÜ)

This is a contradiction: x cannot be any of the xm, since m £ nm and xm Ï Im+1. 

Thus P  must be uncountable, as desired. à

Example:  

a) Although we are still lacking the means to prove it, it can be shown that if P is a 

nonempty perfect subset of HM , dL in which every Cauchy sequence converges, P must 

be an uncountable set. 

b) Let HM , dL be a discrete metric space. Suppose P Ì M  is not empty. Then P is not 

perfect; B1HxL = 8x< for any x Î P. Hence x cannot be a limit point of P.

What went wrong? Every Cauchy sequence in HM , dL must converge in HM , dL. Why don’t 

we have perfect sets other than Æ?

c) Let M = Q under the usual metric of R. Then P = @0, 1D Ý Q is perfect in Q. Notice, 

however, that P Ì Q and must therefore be countable. Does this contradict a)? Absolutely 

not! Lots of Cauchy sequences of elements of  Q fail to converge in Q.  Ù

Note: It appears that nonempty perfect subsets are rather large. One would expect these 

sets to occupy some space on the real number line, for instance. However, reality is 

stronger than intuition. It seems that perfect subsets of R can be so constructed as to 

include almost all of R and yet be so thin that they fail to contain a single interval, no 

matter how small this interval may be.

We will see shortly how this materializes but before we can present our argument, a few 

definitions will prove useful.

Definition: Let A be a subset of a metric space HM , dL. If x Î A and x is not a limit point 

of A, then x is called an isolated point of A.

**Remark: Note that with this definition, we say that a set is perfect if it is closed and has 

no isolated points.**

Definition: A set A is said to be dense in HM .dL (or, as some authors say, everywhere 

dense) if A = M . That is, every point of M  is either in A or is a limit point of A if A is 

dense in M .

Definition: A set A is said to be nowhere dense in HM , dL if HALo
= Æ.

Example:  

a) The sets Q and R\Q are dense subsets of R.

b) Let A = : 1

n
: n ³ 1>. Then A is nowhere dense in R, because A = A Ü 80< and HALo

= Æ. 

c) Let HM , dL be discrete. If A Ì M , then A is both a closed and an open subset of M . 

Thus, A = A and A = Ao. Thus, if A is not empty, A = A = HALo
¹ Æ. Hence, A is not 

nowhere dense in M . Notice, however, that the statement “not nowhere dense” is not 

equivalent to the phrase “dense”. In fact, the only dense subset of M  is M  itself. Every 

point of a discrete space is an isolated point. 

d) In general, “not nowhere dense” is not the same as “dense”. In R, the set A = H0, 1L is 

not dense because A = @0, 1D ¹ R. However, A is not nowhere dense, as 

HALo
= A = H0, 1L ¹ Æ . The term “nowhere dense” is an unfortunate choice of language 

that is sadly too common in the literature to avoid. We should think of nowhere dense 

sets as “thin” sets or sets that are far from having even a single neighborhood. 

e) While R is everywhere dense in itself, it is nowhere dense when it is considered as a 

subset of R
2 (why?). Ù

Example:  

Suppose that a special forces unit has been sent into a zombie-infested area to search for 

survivors. The progress of the operation is being monitored in a remote HQ (see fig)

    

If the red dots represent the positions of the special-forces soldiers and the black dots 

are positions of detected zombies, what can you say about the outcome of this operation? 

Solution:

Every point on the screen is either a zombie or a limit point of zombies. Thus, topologi-

cally speaking, the set of all zombies is dense in the set of points. Notice also that the set 

of all red points is nowhere dense; that is, all neighborhoods of the red points have been 

breached with no chance for their recovery. Sadly, the operation is a fiasco. All of our 

brave soldiers will soon join the ranks of the undead. Ù

Now we are finally ready to present the argument that we alluded to previous to the 

above definitions:

• Lemma 1:

Let E be a closed subset of HM , dL and EHiL be the set of all isolated points of E. Then 

E\EHiL is a closed subset of HM , dL. 

Proof:

Let 8xn<
n=1
¥ Ì E\EHiL be a sequence that converges to x Î M . To show that E\EHiL is closed, 

we must prove that x Î E\EHiL. Notice, however, that since E is closed, xn Ì x � x Î E. 

Furthermore, this means that x is a limit point of E so x is not an isolated point, i.e. 

x Ï EHiL. Hence it follows that x Î E\EHiL as desired.  à

• Lemma 2:

Let E be a closed subset of R. Then the set of all isolated points of E, EHiL, is at most 

countable.

Proof:

Every isolated point of E is contained in an open interval that has no other points of E. 

In other words, if x Î EHiL, then x Î Ix such that Ix Ý E = 8x< and Ix is open. Thus, 

EHiL Ì Ü
xÎEHiL

Ix where Ix Ý Iy = Æ if x ¹ y.

Since each interval contains a rational, this union is countable. This indicates that EHiL is 

also countable as each Ix contains only one point of EHiL.   à

• Theorem:

There exist perfect subsets of R that contain nearly all of R and yet fail to have even a 

single rational number. Such sets must be nowhere dense.

Proof:

Let Ε > 0. List all the rational numbers in a sequence 8rn<
n=1
¥  and put each rn at the center 

of an open interval In of lengthHInL =
Ε

2n .

If G = Ü
n=1

¥

In, then G is open and

   lengthHGL £ Ú
n=1

¥

lengthHInL = Ú
n=1

¥
Ε

2n = Ε .

Setting E = Gc, we see that E is a closed set whose size must be infinite. That is, 

lengthHEL = ¥. Thus, E must be uncountable. 

By lemma 1, E\EHiL is also a closed set and by lemma 2, E\EHiL must be uncountable 

(because we delete at most countably many points). Finally, observe that P = E\EHiL is a 

perfect subset of R. à

          THE CANTOR SET

Consider the process of successively removing “middle thirds” from the interval @0, 1D. 
    

           

We continue this process inductively. At the nth stage we construct In from In-1 by remov-

ing 2n-1 disjoint, open, “middle thirds” intervals from In-1, each of length 3-n; we will call 

this discarded set Jn. 

Thus, In is the union of 2n closed subintervals of In-1, and the complement of In in @0, 1D 
is J1 Ü ... Ü Jn . The Cantor set D is defined as the set of points that still remain at the end 

of this process, in other words, the “limit” of the sets In. 

More precisely, D = Ý
n=1

¥

In. 

It follows from the nested interval theorem that D ¹ Ø , but notice that D is at least count-

ably infinite. The endpoints of each In are in D:

  0, 1,
1

3
,

2

3
,

1

9
,

2

9
, ... Î D .

We will refer to these points as the endpoints of D, that is, all of the points in D of the 

form 
a

3n
 for some integers a and n. 

As we shall see presently, D is actually uncountable! This is more than a little surprising. 

Just try to imagine how terribly sparse the next few levels of the “middle thirds” diagram 

would look on the page. Adding even a few more levels defies the limits of typesetting! 

For good measure we will give two proofs that D is uncountable, the first being some-

what combinatorial. Notice that each subinterval of In-1 results in two subintervals of In 

(after discarding a middle third). We label these two new intervals L and R (for left and 

right) :

       

               

As we progress down through the levels of the diagram toward the Cantor set 

(somewhere far below), imagine that we “step down” from one level to the next by repeat-

edly choosing either a step to the left (landing on an L interval in the next level below) or 

a step to the right (landing on an R interval). At each stage we are only allowed to step 

down to a subinterval of the interval we are presently on – jumping across “gaps” is not 

allowed! Thus, each string of choices, LRLRRLLRLLLR… , describes a unique “path” 

from the top level I0 down to the bottom level D. 

The Cantor set, then, is quite literally the “dust” at the end of the trail. Said another way, 

each such “path” determines a unique sequence of nested subintervals, one from each 

level, whose intersection is a single point of D. Conversely, each point x Î D lies at the 

end of exactly one such path, because at any given level there is only one possible subin-

terval of In on our diagram, call it I
�

n , that contains x. The resulting sequence of intervals 

is clearly nested (why?). 

Thus, the Cantor set D is in one-to-one correspondence with the set of all paths, that is, 

the set of all sequences of L’s and R’s. Of course, any two choices would have done just 

as well, so we might also say that D is equivalent to the set of all sequences of 0’s and 1’s 

– a set we already know to be uncountable. 

Here is what this means: 

          cardHDL = 2À0 = cardH@0, 1DL .

Absolutely amazing! The Cantor set is just as “big” as @0, 1D and yet it strains the imagina-

tion to picture such a sparse set of points. Before we give our second proof that D is 

uncountable, let’s see why D is “small” (in at least one sense). We will show that D has 

“measure zero”; that is, the “measure” or “total length” of all of the intervals in its comple-

ment @0, 1D\D is 1. 

Here’s why: 

By induction, the total length of the 2n-1 disjoint intervals comprising Jn (the set we 

discard at the nth stage) is 
2n-1

3n
. 

So the total length of @0, 1D\D must be

Ú
n=1

¥
2n-1

3n
=

1

3
Ú
n=1

¥

J 2

3
N
n-1

=
1

3

1

1 -
2

3

= 1 .

We have discarded everything!? And left uncountably many points behind!? How 

bizarre! This simultaneous “bigness” and “smallness” is precisely what makes the Cantor 

set so intriguing.

Our second proof that D is uncountable is based on an equivalent characterization of D 

in terms of ternary (base 3) decimals. Recall that each x in @0, 1D can be written, in possi-

bly more than one way, as: x = 0. a1 a2 a3 … Hbase 3L, where each an = 0, 1, or 2. This 

three-way choice for decimal digits (base 3) corresponds to the three-way splitting of 

intervals that we saw earlier. 

To see this, let us consider a few specific examples. 

For instance, the three cases a1 = 0, 1, or 2 correspond to the three intervals @0, 1 � 3D,  
H1 � 3, 2 � 3L,  and @2 � 3, 1D :

            

There is some ambiguity at these endpoints:

 

   

but each of these ambiguous cases has at least one representation with a1 in the proper 

range. Next, the figure below shows the situation for I2 (but this time ignoring the dis-

carded intervals): 

             

Again, some confusion is possible at the endpoints:

             

We take these few examples as proof of the following theorem.

• Theorem: 

x Î D iff x can be written as Ú
n=1

¥
an

3n
, where each an is either 0 or 2. 

Thus the Cantor set consists of those points in @0, 1D having some base 3 decimal represen-

tation that excludes the digit 1. Knowing this we can list all sorts of elements of D. For 

example, 
1

4
Î D because 

1

4
= 0.020202 … Hbase 3L. 

The above theorem also leads to another proof that D is uncountable; or, rather, it gives 

us a new way of writing the old proof. The first proof used sequences of 0’s and 1’s, and 

now we find ourselves with sequences of 0’s and 2’s; the connection isn’t hard to guess.

• Corollary:

D is uncountable. In fact, D is equivalent to @0, 1D. 

Proof:

By altering our notation we can easily display a correspondence between D and @0, 1D. 

Each x Î D may be written x = Ú
n=1

¥
2 bn

3n
 , where bn = 0 or 1 , and now we define the Can-

tor function f : D�@0, 1D by

                f Ú
n=1

¥
2 bn

3n
= Ú

n=1

¥
bn

2n        (where bn = 0, 1)

  

That is, 

Now f  is clearly onto, and hence we have a second proof that D is uncountable (why?). 

But f  isn’t one-to-one; here’s why: 

           

The same phenomenon occurs at each pair of endpoints of any discarded “middle third” 

interval (i.e., a subinterval of Jn):

        

It is easy to see that f  is increasing; that is, if with x < y, then f HxL £ f H yL. We leave it as 

an exercise to check that f HxL = f H yL iff x and y are endpoints of a discarded “middle 

third” interval (see Exercise 26 on Carother’s ). Thus, f  is one-to-one except at the end-

points of D (a countable set), where it’s two-to-one. It follows that D is equivalent to 

@0, 1D. (How?) à

8     Perfect Sets & Cantor Set.nb



Before  we start our discussion of perfect sets, let’s present a very important theorem, 

called the nested interval theorem, which is an essential tool that we’ll be using in the 

next few topics. 

Yet before presenting this theorem let’s make the following observation:

• Theorem:

A monotone, bounded sequence of real numbers converges in R.

Proof:

Let 8xn<
n=1
¥ Ì R be monotone and bounded. 

We first suppose that 8xn< is increasing (that is, xm £ xn whenever m < n). Now, since 8xn< 
is bounded, we may set x = sup

nÎN

HxnL (a real number). We will show that x = limit
n®¥

xn.

Let Ε > 0. Since x - Ε < x = sup
nÎN

HxnL, we must have xN > x - Ε for some N . But then, for 

any n ³ N , we have x - Ε < xN £ xn £ x. That is,  x - xn¤ < Ε " n ³ N . Consequently, 8xn< 
converges and x = sup

nÎN

HxnL = limit
n®¥

xn. 

Finally, if 8xn< is decreasing, consider the increasing sequence 8- xn<. from the first part 

of the proof, 8- xn< converges to sup
nÎN

H- xnL = - inf
nÎN

HxnL. It then follows that 8xn< converges 

to inf
nÎN

HxnL. à

• The Nested Interval Theorem:

If 8In<n=1
¥  is a sequence of closed, bounded, nonempty intervals in R with 

I1 � I2 � I3 � ..., 

then Ý
n=1

¥

In ¹ Æ. If, in addition, lengthHInL�0, then Ý
n=1

¥

In contains precisely one point.

Proof:

Write @an, bnD. Then In É In+1 means that an £ an+1 £ bn+1 £ bn " n. 

Thus,

     a = limit
n®¥

HanL = sup
nÎN

HanL and     b = limit
n®¥

HbnL = inf
nÎN

HbnL

both exist (as finite real numbers) and satisfy a £ b. Thus, we must have Ý
n=1

¥

In = @a, bD. 

Indeed, if x Î In " n, then an £ x £ bn " n, and hence a £ x £ b. Conversely, if a £ x £ b, 

then an £ x £ bn " n. That is, x Î In " n. Finally, if bn - an = lengthHInL�0, then a = b 

and so Ý
n=1

¥

In = 8a<.   à

(Alternate) Proof:  

  

Example:  

a) Note that it is essential that the intervals used in the nested interval theorem be both 

closed and bounded. 

Indeed, Ý
n=1

¥

@n, ¥L = Æ  and  Ý
n=1

¥

H0, 1 � nD = Æ .

b) Suppose that 8In< is a sequence of closed intervals with In É In+1 for all n and with 

lengthHInL�0  as  n�¥. If Ý
n=1

¥

In = 8x<, then any sequence of points 8xn<
n=1
¥ , with xn Î In 

for all n, must converge to x. Ù

                    PERFECT SETS

Definition:  A set P is a perfect set if it is empty or if it is a closed set and every point of 

P is a limit point of P. 

Example:  

a) The sets 

     • R     • H-¥, aD      • @a, ¥L  
as well as any closed and bounded intervals @a, bD (a < b), are perfect sets. 

b) The sets 

• Ha, bL • @a, bD Ü 8c< (b < c)    • Q   • R\Q

are not perfect sets. The sets Ha, bL, Q, and R\Q fail to be closed, even though every point 

in each of these sets is a limit point of the set. The set @a, bD Ü 8c< on the other hand, fails 

to be a perfect set because c is not a limit point of @a, bD Ü 8c<.  

c) Let 8xn<
n=1
¥  be convergent in HM , dL, that is, xn Ì

d

x in M . Then the set 8xn : n ³ 1< Ü 8x< 

is not perfect. Although the set is closed, only x is a limit point.  Ù

Notice that in all of the above listed examples of perfect subsets of R, the perfect sets 

turned out to be uncountable sets. The next theorem shows that this must always be the 

case.

• Theorem:

Let P be a perfect subset of R. Then P is uncountable. 

Proof:

Suppose to the contrary that P = 8x1, x2, ..., xn, ...< is countable. Let I1 be any closed 

interval centered at x1 of lengthHI1L £ 1. Then, since x1 Î P and P is perfect, it follows 

that x1 is a limit point of P. In particular, HI1\8x1<L Ý P ¹ Æ.

Let n2 be the smallest integer for which xn2
Î HI1\8x1<L Ý P and let I2 be any closed inter-

val centered at xn2
 of lengthHI2L £

1

2
 such that I2 Ì I1 and x1 Ï I2. Observe that by the 

minimality of n2, xk Ï I2  for any k < n2. 

Since xn2
Î P, it is a limit point of P and therefore II2\9xn2

=M Ý P ¹ Æ. Now let n3 be the 

smallest integer for which xn3
Î II2\9xn2

=M Ý P. Set I3 to be any closed interval centered at 

xn3
 of lengthHI3L £

1

3
 such that I3 Ì I2 and xn2

Ï I3.

Continuing in this fashion, we obtain a nested sequence of closed intervals 

I1 É I2 É I3 É ... such that lengthHInL�0  as n�¥  and xk Î Im for all k < nm. By the 

Nested Interval Theorem, Ý
n=1

¥

In = 8x<  for some x Î R. Notice, however, that x is a limit 

point of P because it is the limit point of the center points of the intervals In. Thus, as P 

is closed, we must have x Î P. (ÞÜ)

This is a contradiction: x cannot be any of the xm, since m £ nm and xm Ï Im+1. 

Thus P  must be uncountable, as desired. à

Example:  

a) Although we are still lacking the means to prove it, it can be shown that if P is a 

nonempty perfect subset of HM , dL in which every Cauchy sequence converges, P must 

be an uncountable set. 

b) Let HM , dL be a discrete metric space. Suppose P Ì M  is not empty. Then P is not 

perfect; B1HxL = 8x< for any x Î P. Hence x cannot be a limit point of P.

What went wrong? Every Cauchy sequence in HM , dL must converge in HM , dL. Why don’t 

we have perfect sets other than Æ?

c) Let M = Q under the usual metric of R. Then P = @0, 1D Ý Q is perfect in Q. Notice, 

however, that P Ì Q and must therefore be countable. Does this contradict a)? Absolutely 

not! Lots of Cauchy sequences of elements of  Q fail to converge in Q.  Ù

Note: It appears that nonempty perfect subsets are rather large. One would expect these 

sets to occupy some space on the real number line, for instance. However, reality is 

stronger than intuition. It seems that perfect subsets of R can be so constructed as to 

include almost all of R and yet be so thin that they fail to contain a single interval, no 

matter how small this interval may be.

We will see shortly how this materializes but before we can present our argument, a few 

definitions will prove useful.

Definition: Let A be a subset of a metric space HM , dL. If x Î A and x is not a limit point 

of A, then x is called an isolated point of A.

**Remark: Note that with this definition, we say that a set is perfect if it is closed and has 

no isolated points.**

Definition: A set A is said to be dense in HM .dL (or, as some authors say, everywhere 

dense) if A = M . That is, every point of M  is either in A or is a limit point of A if A is 

dense in M .

Definition: A set A is said to be nowhere dense in HM , dL if HALo
= Æ.

Example:  

a) The sets Q and R\Q are dense subsets of R.

b) Let A = : 1

n
: n ³ 1>. Then A is nowhere dense in R, because A = A Ü 80< and HALo

= Æ. 

c) Let HM , dL be discrete. If A Ì M , then A is both a closed and an open subset of M . 

Thus, A = A and A = Ao. Thus, if A is not empty, A = A = HALo
¹ Æ. Hence, A is not 

nowhere dense in M . Notice, however, that the statement “not nowhere dense” is not 

equivalent to the phrase “dense”. In fact, the only dense subset of M  is M  itself. Every 

point of a discrete space is an isolated point. 

d) In general, “not nowhere dense” is not the same as “dense”. In R, the set A = H0, 1L is 

not dense because A = @0, 1D ¹ R. However, A is not nowhere dense, as 

HALo
= A = H0, 1L ¹ Æ . The term “nowhere dense” is an unfortunate choice of language 

that is sadly too common in the literature to avoid. We should think of nowhere dense 

sets as “thin” sets or sets that are far from having even a single neighborhood. 

e) While R is everywhere dense in itself, it is nowhere dense when it is considered as a 

subset of R
2 (why?). Ù

Example:  

Suppose that a special forces unit has been sent into a zombie-infested area to search for 

survivors. The progress of the operation is being monitored in a remote HQ (see fig)

    

If the red dots represent the positions of the special-forces soldiers and the black dots 

are positions of detected zombies, what can you say about the outcome of this operation? 

Solution:

Every point on the screen is either a zombie or a limit point of zombies. Thus, topologi-

cally speaking, the set of all zombies is dense in the set of points. Notice also that the set 

of all red points is nowhere dense; that is, all neighborhoods of the red points have been 

breached with no chance for their recovery. Sadly, the operation is a fiasco. All of our 

brave soldiers will soon join the ranks of the undead. Ù

Now we are finally ready to present the argument that we alluded to previous to the 

above definitions:

• Lemma 1:

Let E be a closed subset of HM , dL and EHiL be the set of all isolated points of E. Then 

E\EHiL is a closed subset of HM , dL. 

Proof:

Let 8xn<
n=1
¥ Ì E\EHiL be a sequence that converges to x Î M . To show that E\EHiL is closed, 

we must prove that x Î E\EHiL. Notice, however, that since E is closed, xn Ì x � x Î E. 

Furthermore, this means that x is a limit point of E so x is not an isolated point, i.e. 

x Ï EHiL. Hence it follows that x Î E\EHiL as desired.  à

• Lemma 2:

Let E be a closed subset of R. Then the set of all isolated points of E, EHiL, is at most 

countable.

Proof:

Every isolated point of E is contained in an open interval that has no other points of E. 

In other words, if x Î EHiL, then x Î Ix such that Ix Ý E = 8x< and Ix is open. Thus, 

EHiL Ì Ü
xÎEHiL

Ix where Ix Ý Iy = Æ if x ¹ y.

Since each interval contains a rational, this union is countable. This indicates that EHiL is 

also countable as each Ix contains only one point of EHiL.   à

• Theorem:

There exist perfect subsets of R that contain nearly all of R and yet fail to have even a 

single rational number. Such sets must be nowhere dense.

Proof:

Let Ε > 0. List all the rational numbers in a sequence 8rn<
n=1
¥  and put each rn at the center 

of an open interval In of lengthHInL =
Ε

2n .

If G = Ü
n=1

¥

In, then G is open and

   lengthHGL £ Ú
n=1

¥

lengthHInL = Ú
n=1

¥
Ε

2n = Ε .

Setting E = Gc, we see that E is a closed set whose size must be infinite. That is, 

lengthHEL = ¥. Thus, E must be uncountable. 

By lemma 1, E\EHiL is also a closed set and by lemma 2, E\EHiL must be uncountable 

(because we delete at most countably many points). Finally, observe that P = E\EHiL is a 

perfect subset of R. à

          THE CANTOR SET

Consider the process of successively removing “middle thirds” from the interval @0, 1D. 
    

           

We continue this process inductively. At the nth stage we construct In from In-1 by remov-

ing 2n-1 disjoint, open, “middle thirds” intervals from In-1, each of length 3-n; we will call 

this discarded set Jn. 

Thus, In is the union of 2n closed subintervals of In-1, and the complement of In in @0, 1D 
is J1 Ü ... Ü Jn . The Cantor set D is defined as the set of points that still remain at the end 

of this process, in other words, the “limit” of the sets In. 

More precisely, D = Ý
n=1

¥

In. 

It follows from the nested interval theorem that D ¹ Ø , but notice that D is at least count-

ably infinite. The endpoints of each In are in D:

  0, 1,
1

3
,

2

3
,

1

9
,

2

9
, ... Î D .

We will refer to these points as the endpoints of D, that is, all of the points in D of the 

form 
a

3n
 for some integers a and n. 

As we shall see presently, D is actually uncountable! This is more than a little surprising. 

Just try to imagine how terribly sparse the next few levels of the “middle thirds” diagram 

would look on the page. Adding even a few more levels defies the limits of typesetting! 

For good measure we will give two proofs that D is uncountable, the first being some-

what combinatorial. Notice that each subinterval of In-1 results in two subintervals of In 

(after discarding a middle third). We label these two new intervals L and R (for left and 

right) :

       

               

As we progress down through the levels of the diagram toward the Cantor set 

(somewhere far below), imagine that we “step down” from one level to the next by repeat-

edly choosing either a step to the left (landing on an L interval in the next level below) or 

a step to the right (landing on an R interval). At each stage we are only allowed to step 

down to a subinterval of the interval we are presently on – jumping across “gaps” is not 

allowed! Thus, each string of choices, LRLRRLLRLLLR… , describes a unique “path” 

from the top level I0 down to the bottom level D. 

The Cantor set, then, is quite literally the “dust” at the end of the trail. Said another way, 

each such “path” determines a unique sequence of nested subintervals, one from each 

level, whose intersection is a single point of D. Conversely, each point x Î D lies at the 

end of exactly one such path, because at any given level there is only one possible subin-

terval of In on our diagram, call it I
�

n , that contains x. The resulting sequence of intervals 

is clearly nested (why?). 

Thus, the Cantor set D is in one-to-one correspondence with the set of all paths, that is, 

the set of all sequences of L’s and R’s. Of course, any two choices would have done just 

as well, so we might also say that D is equivalent to the set of all sequences of 0’s and 1’s 

– a set we already know to be uncountable. 

Here is what this means: 

          cardHDL = 2À0 = cardH@0, 1DL .

Absolutely amazing! The Cantor set is just as “big” as @0, 1D and yet it strains the imagina-

tion to picture such a sparse set of points. Before we give our second proof that D is 

uncountable, let’s see why D is “small” (in at least one sense). We will show that D has 

“measure zero”; that is, the “measure” or “total length” of all of the intervals in its comple-

ment @0, 1D\D is 1. 

Here’s why: 

By induction, the total length of the 2n-1 disjoint intervals comprising Jn (the set we 

discard at the nth stage) is 
2n-1

3n
. 

So the total length of @0, 1D\D must be

Ú
n=1

¥
2n-1

3n
=

1

3
Ú
n=1

¥

J 2

3
N
n-1

=
1

3

1

1 -
2

3

= 1 .

We have discarded everything!? And left uncountably many points behind!? How 

bizarre! This simultaneous “bigness” and “smallness” is precisely what makes the Cantor 

set so intriguing.

Our second proof that D is uncountable is based on an equivalent characterization of D 

in terms of ternary (base 3) decimals. Recall that each x in @0, 1D can be written, in possi-

bly more than one way, as: x = 0. a1 a2 a3 … Hbase 3L, where each an = 0, 1, or 2. This 

three-way choice for decimal digits (base 3) corresponds to the three-way splitting of 

intervals that we saw earlier. 

To see this, let us consider a few specific examples. 

For instance, the three cases a1 = 0, 1, or 2 correspond to the three intervals @0, 1 � 3D,  
H1 � 3, 2 � 3L,  and @2 � 3, 1D :

            

There is some ambiguity at these endpoints:

 

   

but each of these ambiguous cases has at least one representation with a1 in the proper 

range. Next, the figure below shows the situation for I2 (but this time ignoring the dis-

carded intervals): 

             

Again, some confusion is possible at the endpoints:

             

We take these few examples as proof of the following theorem.

• Theorem: 

x Î D iff x can be written as Ú
n=1

¥
an

3n
, where each an is either 0 or 2. 

Thus the Cantor set consists of those points in @0, 1D having some base 3 decimal represen-

tation that excludes the digit 1. Knowing this we can list all sorts of elements of D. For 

example, 
1

4
Î D because 

1

4
= 0.020202 … Hbase 3L. 

The above theorem also leads to another proof that D is uncountable; or, rather, it gives 

us a new way of writing the old proof. The first proof used sequences of 0’s and 1’s, and 

now we find ourselves with sequences of 0’s and 2’s; the connection isn’t hard to guess.

• Corollary:

D is uncountable. In fact, D is equivalent to @0, 1D. 

Proof:

By altering our notation we can easily display a correspondence between D and @0, 1D. 

Each x Î D may be written x = Ú
n=1

¥
2 bn

3n
 , where bn = 0 or 1 , and now we define the Can-

tor function f : D�@0, 1D by

                f Ú
n=1

¥
2 bn

3n
= Ú

n=1

¥
bn

2n        (where bn = 0, 1)

  

That is, 

Now f  is clearly onto, and hence we have a second proof that D is uncountable (why?). 

But f  isn’t one-to-one; here’s why: 

           

The same phenomenon occurs at each pair of endpoints of any discarded “middle third” 

interval (i.e., a subinterval of Jn):

        

It is easy to see that f  is increasing; that is, if with x < y, then f HxL £ f H yL. We leave it as 

an exercise to check that f HxL = f H yL iff x and y are endpoints of a discarded “middle 

third” interval (see Exercise 26 on Carother’s ). Thus, f  is one-to-one except at the end-

points of D (a countable set), where it’s two-to-one. It follows that D is equivalent to 

@0, 1D. (How?) à
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Before  we start our discussion of perfect sets, let’s present a very important theorem, 

called the nested interval theorem, which is an essential tool that we’ll be using in the 

next few topics. 

Yet before presenting this theorem let’s make the following observation:

• Theorem:

A monotone, bounded sequence of real numbers converges in R.

Proof:

Let 8xn<
n=1
¥ Ì R be monotone and bounded. 

We first suppose that 8xn< is increasing (that is, xm £ xn whenever m < n). Now, since 8xn< 
is bounded, we may set x = sup

nÎN

HxnL (a real number). We will show that x = limit
n®¥

xn.

Let Ε > 0. Since x - Ε < x = sup
nÎN

HxnL, we must have xN > x - Ε for some N . But then, for 

any n ³ N , we have x - Ε < xN £ xn £ x. That is,  x - xn¤ < Ε " n ³ N . Consequently, 8xn< 
converges and x = sup

nÎN

HxnL = limit
n®¥

xn. 

Finally, if 8xn< is decreasing, consider the increasing sequence 8- xn<. from the first part 

of the proof, 8- xn< converges to sup
nÎN

H- xnL = - inf
nÎN

HxnL. It then follows that 8xn< converges 

to inf
nÎN

HxnL. à

• The Nested Interval Theorem:

If 8In<n=1
¥  is a sequence of closed, bounded, nonempty intervals in R with 

I1 � I2 � I3 � ..., 

then Ý
n=1

¥

In ¹ Æ. If, in addition, lengthHInL�0, then Ý
n=1

¥

In contains precisely one point.

Proof:

Write @an, bnD. Then In É In+1 means that an £ an+1 £ bn+1 £ bn " n. 

Thus,

     a = limit
n®¥

HanL = sup
nÎN

HanL and     b = limit
n®¥

HbnL = inf
nÎN

HbnL

both exist (as finite real numbers) and satisfy a £ b. Thus, we must have Ý
n=1

¥

In = @a, bD. 

Indeed, if x Î In " n, then an £ x £ bn " n, and hence a £ x £ b. Conversely, if a £ x £ b, 

then an £ x £ bn " n. That is, x Î In " n. Finally, if bn - an = lengthHInL�0, then a = b 

and so Ý
n=1

¥

In = 8a<.   à

(Alternate) Proof:  

  

Example:  

a) Note that it is essential that the intervals used in the nested interval theorem be both 

closed and bounded. 

Indeed, Ý
n=1

¥

@n, ¥L = Æ  and  Ý
n=1

¥

H0, 1 � nD = Æ .

b) Suppose that 8In< is a sequence of closed intervals with In É In+1 for all n and with 

lengthHInL�0  as  n�¥. If Ý
n=1

¥

In = 8x<, then any sequence of points 8xn<
n=1
¥ , with xn Î In 

for all n, must converge to x. Ù

                    PERFECT SETS

Definition:  A set P is a perfect set if it is empty or if it is a closed set and every point of 

P is a limit point of P. 

Example:  

a) The sets 

     • R     • H-¥, aD      • @a, ¥L  
as well as any closed and bounded intervals @a, bD (a < b), are perfect sets. 

b) The sets 

• Ha, bL • @a, bD Ü 8c< (b < c)    • Q   • R\Q

are not perfect sets. The sets Ha, bL, Q, and R\Q fail to be closed, even though every point 

in each of these sets is a limit point of the set. The set @a, bD Ü 8c< on the other hand, fails 

to be a perfect set because c is not a limit point of @a, bD Ü 8c<.  

c) Let 8xn<
n=1
¥  be convergent in HM , dL, that is, xn Ì

d

x in M . Then the set 8xn : n ³ 1< Ü 8x< 

is not perfect. Although the set is closed, only x is a limit point.  Ù

Notice that in all of the above listed examples of perfect subsets of R, the perfect sets 

turned out to be uncountable sets. The next theorem shows that this must always be the 

case.

• Theorem:

Let P be a perfect subset of R. Then P is uncountable. 

Proof:

Suppose to the contrary that P = 8x1, x2, ..., xn, ...< is countable. Let I1 be any closed 

interval centered at x1 of lengthHI1L £ 1. Then, since x1 Î P and P is perfect, it follows 

that x1 is a limit point of P. In particular, HI1\8x1<L Ý P ¹ Æ.

Let n2 be the smallest integer for which xn2
Î HI1\8x1<L Ý P and let I2 be any closed inter-

val centered at xn2
 of lengthHI2L £

1

2
 such that I2 Ì I1 and x1 Ï I2. Observe that by the 

minimality of n2, xk Ï I2  for any k < n2. 

Since xn2
Î P, it is a limit point of P and therefore II2\9xn2

=M Ý P ¹ Æ. Now let n3 be the 

smallest integer for which xn3
Î II2\9xn2

=M Ý P. Set I3 to be any closed interval centered at 

xn3
 of lengthHI3L £

1

3
 such that I3 Ì I2 and xn2

Ï I3.

Continuing in this fashion, we obtain a nested sequence of closed intervals 

I1 É I2 É I3 É ... such that lengthHInL�0  as n�¥  and xk Î Im for all k < nm. By the 

Nested Interval Theorem, Ý
n=1

¥

In = 8x<  for some x Î R. Notice, however, that x is a limit 

point of P because it is the limit point of the center points of the intervals In. Thus, as P 

is closed, we must have x Î P. (ÞÜ)

This is a contradiction: x cannot be any of the xm, since m £ nm and xm Ï Im+1. 

Thus P  must be uncountable, as desired. à

Example:  

a) Although we are still lacking the means to prove it, it can be shown that if P is a 

nonempty perfect subset of HM , dL in which every Cauchy sequence converges, P must 

be an uncountable set. 

b) Let HM , dL be a discrete metric space. Suppose P Ì M  is not empty. Then P is not 

perfect; B1HxL = 8x< for any x Î P. Hence x cannot be a limit point of P.

What went wrong? Every Cauchy sequence in HM , dL must converge in HM , dL. Why don’t 

we have perfect sets other than Æ?

c) Let M = Q under the usual metric of R. Then P = @0, 1D Ý Q is perfect in Q. Notice, 

however, that P Ì Q and must therefore be countable. Does this contradict a)? Absolutely 

not! Lots of Cauchy sequences of elements of  Q fail to converge in Q.  Ù

Note: It appears that nonempty perfect subsets are rather large. One would expect these 

sets to occupy some space on the real number line, for instance. However, reality is 

stronger than intuition. It seems that perfect subsets of R can be so constructed as to 

include almost all of R and yet be so thin that they fail to contain a single interval, no 

matter how small this interval may be.

We will see shortly how this materializes but before we can present our argument, a few 

definitions will prove useful.

Definition: Let A be a subset of a metric space HM , dL. If x Î A and x is not a limit point 

of A, then x is called an isolated point of A.

**Remark: Note that with this definition, we say that a set is perfect if it is closed and has 

no isolated points.**

Definition: A set A is said to be dense in HM .dL (or, as some authors say, everywhere 

dense) if A = M . That is, every point of M  is either in A or is a limit point of A if A is 

dense in M .

Definition: A set A is said to be nowhere dense in HM , dL if HALo
= Æ.

Example:  

a) The sets Q and R\Q are dense subsets of R.

b) Let A = : 1

n
: n ³ 1>. Then A is nowhere dense in R, because A = A Ü 80< and HALo

= Æ. 

c) Let HM , dL be discrete. If A Ì M , then A is both a closed and an open subset of M . 

Thus, A = A and A = Ao. Thus, if A is not empty, A = A = HALo
¹ Æ. Hence, A is not 

nowhere dense in M . Notice, however, that the statement “not nowhere dense” is not 

equivalent to the phrase “dense”. In fact, the only dense subset of M  is M  itself. Every 

point of a discrete space is an isolated point. 

d) In general, “not nowhere dense” is not the same as “dense”. In R, the set A = H0, 1L is 

not dense because A = @0, 1D ¹ R. However, A is not nowhere dense, as 

HALo
= A = H0, 1L ¹ Æ . The term “nowhere dense” is an unfortunate choice of language 

that is sadly too common in the literature to avoid. We should think of nowhere dense 

sets as “thin” sets or sets that are far from having even a single neighborhood. 

e) While R is everywhere dense in itself, it is nowhere dense when it is considered as a 

subset of R
2 (why?). Ù

Example:  

Suppose that a special forces unit has been sent into a zombie-infested area to search for 

survivors. The progress of the operation is being monitored in a remote HQ (see fig)

    

If the red dots represent the positions of the special-forces soldiers and the black dots 

are positions of detected zombies, what can you say about the outcome of this operation? 

Solution:

Every point on the screen is either a zombie or a limit point of zombies. Thus, topologi-

cally speaking, the set of all zombies is dense in the set of points. Notice also that the set 

of all red points is nowhere dense; that is, all neighborhoods of the red points have been 

breached with no chance for their recovery. Sadly, the operation is a fiasco. All of our 

brave soldiers will soon join the ranks of the undead. Ù

Now we are finally ready to present the argument that we alluded to previous to the 

above definitions:

• Lemma 1:

Let E be a closed subset of HM , dL and EHiL be the set of all isolated points of E. Then 

E\EHiL is a closed subset of HM , dL. 

Proof:

Let 8xn<
n=1
¥ Ì E\EHiL be a sequence that converges to x Î M . To show that E\EHiL is closed, 

we must prove that x Î E\EHiL. Notice, however, that since E is closed, xn Ì x � x Î E. 

Furthermore, this means that x is a limit point of E so x is not an isolated point, i.e. 

x Ï EHiL. Hence it follows that x Î E\EHiL as desired.  à

• Lemma 2:

Let E be a closed subset of R. Then the set of all isolated points of E, EHiL, is at most 

countable.

Proof:

Every isolated point of E is contained in an open interval that has no other points of E. 

In other words, if x Î EHiL, then x Î Ix such that Ix Ý E = 8x< and Ix is open. Thus, 

EHiL Ì Ü
xÎEHiL

Ix where Ix Ý Iy = Æ if x ¹ y.

Since each interval contains a rational, this union is countable. This indicates that EHiL is 

also countable as each Ix contains only one point of EHiL.   à

• Theorem:

There exist perfect subsets of R that contain nearly all of R and yet fail to have even a 

single rational number. Such sets must be nowhere dense.

Proof:

Let Ε > 0. List all the rational numbers in a sequence 8rn<
n=1
¥  and put each rn at the center 

of an open interval In of lengthHInL =
Ε

2n .

If G = Ü
n=1

¥

In, then G is open and

   lengthHGL £ Ú
n=1

¥

lengthHInL = Ú
n=1

¥
Ε

2n = Ε .

Setting E = Gc, we see that E is a closed set whose size must be infinite. That is, 

lengthHEL = ¥. Thus, E must be uncountable. 

By lemma 1, E\EHiL is also a closed set and by lemma 2, E\EHiL must be uncountable 

(because we delete at most countably many points). Finally, observe that P = E\EHiL is a 

perfect subset of R. à

          THE CANTOR SET

Consider the process of successively removing “middle thirds” from the interval @0, 1D. 
    

           

We continue this process inductively. At the nth stage we construct In from In-1 by remov-

ing 2n-1 disjoint, open, “middle thirds” intervals from In-1, each of length 3-n; we will call 

this discarded set Jn. 

Thus, In is the union of 2n closed subintervals of In-1, and the complement of In in @0, 1D 
is J1 Ü ... Ü Jn . The Cantor set D is defined as the set of points that still remain at the end 

of this process, in other words, the “limit” of the sets In. 

More precisely, D = Ý
n=1

¥

In. 

It follows from the nested interval theorem that D ¹ Ø , but notice that D is at least count-

ably infinite. The endpoints of each In are in D:

  0, 1,
1

3
,

2

3
,

1

9
,

2

9
, ... Î D .

We will refer to these points as the endpoints of D, that is, all of the points in D of the 

form 
a

3n
 for some integers a and n. 

As we shall see presently, D is actually uncountable! This is more than a little surprising. 

Just try to imagine how terribly sparse the next few levels of the “middle thirds” diagram 

would look on the page. Adding even a few more levels defies the limits of typesetting! 

For good measure we will give two proofs that D is uncountable, the first being some-

what combinatorial. Notice that each subinterval of In-1 results in two subintervals of In 

(after discarding a middle third). We label these two new intervals L and R (for left and 

right) :

       

               

As we progress down through the levels of the diagram toward the Cantor set 

(somewhere far below), imagine that we “step down” from one level to the next by repeat-

edly choosing either a step to the left (landing on an L interval in the next level below) or 

a step to the right (landing on an R interval). At each stage we are only allowed to step 

down to a subinterval of the interval we are presently on – jumping across “gaps” is not 

allowed! Thus, each string of choices, LRLRRLLRLLLR… , describes a unique “path” 

from the top level I0 down to the bottom level D. 

The Cantor set, then, is quite literally the “dust” at the end of the trail. Said another way, 

each such “path” determines a unique sequence of nested subintervals, one from each 

level, whose intersection is a single point of D. Conversely, each point x Î D lies at the 

end of exactly one such path, because at any given level there is only one possible subin-

terval of In on our diagram, call it I
�

n , that contains x. The resulting sequence of intervals 

is clearly nested (why?). 

Thus, the Cantor set D is in one-to-one correspondence with the set of all paths, that is, 

the set of all sequences of L’s and R’s. Of course, any two choices would have done just 

as well, so we might also say that D is equivalent to the set of all sequences of 0’s and 1’s 

– a set we already know to be uncountable. 

Here is what this means: 

          cardHDL = 2À0 = cardH@0, 1DL .

Absolutely amazing! The Cantor set is just as “big” as @0, 1D and yet it strains the imagina-

tion to picture such a sparse set of points. Before we give our second proof that D is 

uncountable, let’s see why D is “small” (in at least one sense). We will show that D has 

“measure zero”; that is, the “measure” or “total length” of all of the intervals in its comple-

ment @0, 1D\D is 1. 

Here’s why: 

By induction, the total length of the 2n-1 disjoint intervals comprising Jn (the set we 

discard at the nth stage) is 
2n-1

3n
. 

So the total length of @0, 1D\D must be

Ú
n=1

¥
2n-1

3n
=

1

3
Ú
n=1

¥

J 2

3
N
n-1

=
1

3

1

1 -
2

3

= 1 .

We have discarded everything!? And left uncountably many points behind!? How 

bizarre! This simultaneous “bigness” and “smallness” is precisely what makes the Cantor 

set so intriguing.

Our second proof that D is uncountable is based on an equivalent characterization of D 

in terms of ternary (base 3) decimals. Recall that each x in @0, 1D can be written, in possi-

bly more than one way, as: x = 0. a1 a2 a3 … Hbase 3L, where each an = 0, 1, or 2. This 

three-way choice for decimal digits (base 3) corresponds to the three-way splitting of 

intervals that we saw earlier. 

To see this, let us consider a few specific examples. 

For instance, the three cases a1 = 0, 1, or 2 correspond to the three intervals @0, 1 � 3D,  
H1 � 3, 2 � 3L,  and @2 � 3, 1D :

            

There is some ambiguity at these endpoints:

 

   

but each of these ambiguous cases has at least one representation with a1 in the proper 

range. Next, the figure below shows the situation for I2 (but this time ignoring the dis-

carded intervals): 

             

Again, some confusion is possible at the endpoints:

             

We take these few examples as proof of the following theorem.

• Theorem: 

x Î D iff x can be written as Ú
n=1

¥
an

3n
, where each an is either 0 or 2. 

Thus the Cantor set consists of those points in @0, 1D having some base 3 decimal represen-

tation that excludes the digit 1. Knowing this we can list all sorts of elements of D. For 

example, 
1

4
Î D because 

1

4
= 0.020202 … Hbase 3L. 

The above theorem also leads to another proof that D is uncountable; or, rather, it gives 

us a new way of writing the old proof. The first proof used sequences of 0’s and 1’s, and 

now we find ourselves with sequences of 0’s and 2’s; the connection isn’t hard to guess.

• Corollary:

D is uncountable. In fact, D is equivalent to @0, 1D. 

Proof:

By altering our notation we can easily display a correspondence between D and @0, 1D. 

Each x Î D may be written x = Ú
n=1

¥
2 bn

3n
 , where bn = 0 or 1 , and now we define the Can-

tor function f : D�@0, 1D by

                f Ú
n=1

¥
2 bn

3n
= Ú

n=1

¥
bn

2n        (where bn = 0, 1)

  

That is, 

Now f  is clearly onto, and hence we have a second proof that D is uncountable (why?). 

But f  isn’t one-to-one; here’s why: 

           

The same phenomenon occurs at each pair of endpoints of any discarded “middle third” 

interval (i.e., a subinterval of Jn):

        

It is easy to see that f  is increasing; that is, if with x < y, then f HxL £ f H yL. We leave it as 

an exercise to check that f HxL = f H yL iff x and y are endpoints of a discarded “middle 

third” interval (see Exercise 26 on Carother’s ). Thus, f  is one-to-one except at the end-

points of D (a countable set), where it’s two-to-one. It follows that D is equivalent to 

@0, 1D. (How?) à
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Before  we start our discussion of perfect sets, let’s present a very important theorem, 

called the nested interval theorem, which is an essential tool that we’ll be using in the 

next few topics. 

Yet before presenting this theorem let’s make the following observation:

• Theorem:

A monotone, bounded sequence of real numbers converges in R.

Proof:

Let 8xn<
n=1
¥ Ì R be monotone and bounded. 

We first suppose that 8xn< is increasing (that is, xm £ xn whenever m < n). Now, since 8xn< 
is bounded, we may set x = sup

nÎN

HxnL (a real number). We will show that x = limit
n®¥

xn.

Let Ε > 0. Since x - Ε < x = sup
nÎN

HxnL, we must have xN > x - Ε for some N . But then, for 

any n ³ N , we have x - Ε < xN £ xn £ x. That is,  x - xn¤ < Ε " n ³ N . Consequently, 8xn< 
converges and x = sup

nÎN

HxnL = limit
n®¥

xn. 

Finally, if 8xn< is decreasing, consider the increasing sequence 8- xn<. from the first part 

of the proof, 8- xn< converges to sup
nÎN

H- xnL = - inf
nÎN

HxnL. It then follows that 8xn< converges 

to inf
nÎN

HxnL. à

• The Nested Interval Theorem:

If 8In<n=1
¥  is a sequence of closed, bounded, nonempty intervals in R with 

I1 � I2 � I3 � ..., 

then Ý
n=1

¥

In ¹ Æ. If, in addition, lengthHInL�0, then Ý
n=1

¥

In contains precisely one point.

Proof:

Write @an, bnD. Then In É In+1 means that an £ an+1 £ bn+1 £ bn " n. 

Thus,

     a = limit
n®¥

HanL = sup
nÎN

HanL and     b = limit
n®¥

HbnL = inf
nÎN

HbnL

both exist (as finite real numbers) and satisfy a £ b. Thus, we must have Ý
n=1

¥

In = @a, bD. 

Indeed, if x Î In " n, then an £ x £ bn " n, and hence a £ x £ b. Conversely, if a £ x £ b, 

then an £ x £ bn " n. That is, x Î In " n. Finally, if bn - an = lengthHInL�0, then a = b 

and so Ý
n=1

¥

In = 8a<.   à

(Alternate) Proof:  

  

Example:  

a) Note that it is essential that the intervals used in the nested interval theorem be both 

closed and bounded. 

Indeed, Ý
n=1

¥

@n, ¥L = Æ  and  Ý
n=1

¥

H0, 1 � nD = Æ .

b) Suppose that 8In< is a sequence of closed intervals with In É In+1 for all n and with 

lengthHInL�0  as  n�¥. If Ý
n=1

¥

In = 8x<, then any sequence of points 8xn<
n=1
¥ , with xn Î In 

for all n, must converge to x. Ù

                    PERFECT SETS

Definition:  A set P is a perfect set if it is empty or if it is a closed set and every point of 

P is a limit point of P. 

Example:  

a) The sets 

     • R     • H-¥, aD      • @a, ¥L  
as well as any closed and bounded intervals @a, bD (a < b), are perfect sets. 

b) The sets 

• Ha, bL • @a, bD Ü 8c< (b < c)    • Q   • R\Q

are not perfect sets. The sets Ha, bL, Q, and R\Q fail to be closed, even though every point 

in each of these sets is a limit point of the set. The set @a, bD Ü 8c< on the other hand, fails 

to be a perfect set because c is not a limit point of @a, bD Ü 8c<.  

c) Let 8xn<
n=1
¥  be convergent in HM , dL, that is, xn Ì

d

x in M . Then the set 8xn : n ³ 1< Ü 8x< 

is not perfect. Although the set is closed, only x is a limit point.  Ù

Notice that in all of the above listed examples of perfect subsets of R, the perfect sets 

turned out to be uncountable sets. The next theorem shows that this must always be the 

case.

• Theorem:

Let P be a perfect subset of R. Then P is uncountable. 

Proof:

Suppose to the contrary that P = 8x1, x2, ..., xn, ...< is countable. Let I1 be any closed 

interval centered at x1 of lengthHI1L £ 1. Then, since x1 Î P and P is perfect, it follows 

that x1 is a limit point of P. In particular, HI1\8x1<L Ý P ¹ Æ.

Let n2 be the smallest integer for which xn2
Î HI1\8x1<L Ý P and let I2 be any closed inter-

val centered at xn2
 of lengthHI2L £

1

2
 such that I2 Ì I1 and x1 Ï I2. Observe that by the 

minimality of n2, xk Ï I2  for any k < n2. 

Since xn2
Î P, it is a limit point of P and therefore II2\9xn2

=M Ý P ¹ Æ. Now let n3 be the 

smallest integer for which xn3
Î II2\9xn2

=M Ý P. Set I3 to be any closed interval centered at 

xn3
 of lengthHI3L £

1

3
 such that I3 Ì I2 and xn2

Ï I3.

Continuing in this fashion, we obtain a nested sequence of closed intervals 

I1 É I2 É I3 É ... such that lengthHInL�0  as n�¥  and xk Î Im for all k < nm. By the 

Nested Interval Theorem, Ý
n=1

¥

In = 8x<  for some x Î R. Notice, however, that x is a limit 

point of P because it is the limit point of the center points of the intervals In. Thus, as P 

is closed, we must have x Î P. (ÞÜ)

This is a contradiction: x cannot be any of the xm, since m £ nm and xm Ï Im+1. 

Thus P  must be uncountable, as desired. à

Example:  

a) Although we are still lacking the means to prove it, it can be shown that if P is a 

nonempty perfect subset of HM , dL in which every Cauchy sequence converges, P must 

be an uncountable set. 

b) Let HM , dL be a discrete metric space. Suppose P Ì M  is not empty. Then P is not 

perfect; B1HxL = 8x< for any x Î P. Hence x cannot be a limit point of P.

What went wrong? Every Cauchy sequence in HM , dL must converge in HM , dL. Why don’t 

we have perfect sets other than Æ?

c) Let M = Q under the usual metric of R. Then P = @0, 1D Ý Q is perfect in Q. Notice, 

however, that P Ì Q and must therefore be countable. Does this contradict a)? Absolutely 

not! Lots of Cauchy sequences of elements of  Q fail to converge in Q.  Ù

Note: It appears that nonempty perfect subsets are rather large. One would expect these 

sets to occupy some space on the real number line, for instance. However, reality is 

stronger than intuition. It seems that perfect subsets of R can be so constructed as to 

include almost all of R and yet be so thin that they fail to contain a single interval, no 

matter how small this interval may be.

We will see shortly how this materializes but before we can present our argument, a few 

definitions will prove useful.

Definition: Let A be a subset of a metric space HM , dL. If x Î A and x is not a limit point 

of A, then x is called an isolated point of A.

**Remark: Note that with this definition, we say that a set is perfect if it is closed and has 

no isolated points.**

Definition: A set A is said to be dense in HM .dL (or, as some authors say, everywhere 

dense) if A = M . That is, every point of M  is either in A or is a limit point of A if A is 

dense in M .

Definition: A set A is said to be nowhere dense in HM , dL if HALo
= Æ.

Example:  

a) The sets Q and R\Q are dense subsets of R.

b) Let A = : 1

n
: n ³ 1>. Then A is nowhere dense in R, because A = A Ü 80< and HALo

= Æ. 

c) Let HM , dL be discrete. If A Ì M , then A is both a closed and an open subset of M . 

Thus, A = A and A = Ao. Thus, if A is not empty, A = A = HALo
¹ Æ. Hence, A is not 

nowhere dense in M . Notice, however, that the statement “not nowhere dense” is not 

equivalent to the phrase “dense”. In fact, the only dense subset of M  is M  itself. Every 

point of a discrete space is an isolated point. 

d) In general, “not nowhere dense” is not the same as “dense”. In R, the set A = H0, 1L is 

not dense because A = @0, 1D ¹ R. However, A is not nowhere dense, as 

HALo
= A = H0, 1L ¹ Æ . The term “nowhere dense” is an unfortunate choice of language 

that is sadly too common in the literature to avoid. We should think of nowhere dense 

sets as “thin” sets or sets that are far from having even a single neighborhood. 

e) While R is everywhere dense in itself, it is nowhere dense when it is considered as a 

subset of R
2 (why?). Ù

Example:  

Suppose that a special forces unit has been sent into a zombie-infested area to search for 

survivors. The progress of the operation is being monitored in a remote HQ (see fig)

    

If the red dots represent the positions of the special-forces soldiers and the black dots 

are positions of detected zombies, what can you say about the outcome of this operation? 

Solution:

Every point on the screen is either a zombie or a limit point of zombies. Thus, topologi-

cally speaking, the set of all zombies is dense in the set of points. Notice also that the set 

of all red points is nowhere dense; that is, all neighborhoods of the red points have been 

breached with no chance for their recovery. Sadly, the operation is a fiasco. All of our 

brave soldiers will soon join the ranks of the undead. Ù

Now we are finally ready to present the argument that we alluded to previous to the 

above definitions:

• Lemma 1:

Let E be a closed subset of HM , dL and EHiL be the set of all isolated points of E. Then 

E\EHiL is a closed subset of HM , dL. 

Proof:

Let 8xn<
n=1
¥ Ì E\EHiL be a sequence that converges to x Î M . To show that E\EHiL is closed, 

we must prove that x Î E\EHiL. Notice, however, that since E is closed, xn Ì x � x Î E. 

Furthermore, this means that x is a limit point of E so x is not an isolated point, i.e. 

x Ï EHiL. Hence it follows that x Î E\EHiL as desired.  à

• Lemma 2:

Let E be a closed subset of R. Then the set of all isolated points of E, EHiL, is at most 

countable.

Proof:

Every isolated point of E is contained in an open interval that has no other points of E. 

In other words, if x Î EHiL, then x Î Ix such that Ix Ý E = 8x< and Ix is open. Thus, 

EHiL Ì Ü
xÎEHiL

Ix where Ix Ý Iy = Æ if x ¹ y.

Since each interval contains a rational, this union is countable. This indicates that EHiL is 

also countable as each Ix contains only one point of EHiL.   à

• Theorem:

There exist perfect subsets of R that contain nearly all of R and yet fail to have even a 

single rational number. Such sets must be nowhere dense.

Proof:

Let Ε > 0. List all the rational numbers in a sequence 8rn<
n=1
¥  and put each rn at the center 

of an open interval In of lengthHInL =
Ε

2n .

If G = Ü
n=1

¥

In, then G is open and

   lengthHGL £ Ú
n=1

¥

lengthHInL = Ú
n=1

¥
Ε

2n = Ε .

Setting E = Gc, we see that E is a closed set whose size must be infinite. That is, 

lengthHEL = ¥. Thus, E must be uncountable. 

By lemma 1, E\EHiL is also a closed set and by lemma 2, E\EHiL must be uncountable 

(because we delete at most countably many points). Finally, observe that P = E\EHiL is a 

perfect subset of R. à

          THE CANTOR SET

Consider the process of successively removing “middle thirds” from the interval @0, 1D. 
    

           

We continue this process inductively. At the nth stage we construct In from In-1 by remov-

ing 2n-1 disjoint, open, “middle thirds” intervals from In-1, each of length 3-n; we will call 

this discarded set Jn. 

Thus, In is the union of 2n closed subintervals of In-1, and the complement of In in @0, 1D 
is J1 Ü ... Ü Jn . The Cantor set D is defined as the set of points that still remain at the end 

of this process, in other words, the “limit” of the sets In. 

More precisely, D = Ý
n=1

¥

In. 

It follows from the nested interval theorem that D ¹ Ø , but notice that D is at least count-

ably infinite. The endpoints of each In are in D:

  0, 1,
1

3
,

2

3
,

1

9
,

2

9
, ... Î D .

We will refer to these points as the endpoints of D, that is, all of the points in D of the 

form 
a

3n
 for some integers a and n. 

As we shall see presently, D is actually uncountable! This is more than a little surprising. 

Just try to imagine how terribly sparse the next few levels of the “middle thirds” diagram 

would look on the page. Adding even a few more levels defies the limits of typesetting! 

For good measure we will give two proofs that D is uncountable, the first being some-

what combinatorial. Notice that each subinterval of In-1 results in two subintervals of In 

(after discarding a middle third). We label these two new intervals L and R (for left and 

right) :

       

               

As we progress down through the levels of the diagram toward the Cantor set 

(somewhere far below), imagine that we “step down” from one level to the next by repeat-

edly choosing either a step to the left (landing on an L interval in the next level below) or 

a step to the right (landing on an R interval). At each stage we are only allowed to step 

down to a subinterval of the interval we are presently on – jumping across “gaps” is not 

allowed! Thus, each string of choices, LRLRRLLRLLLR… , describes a unique “path” 

from the top level I0 down to the bottom level D. 

The Cantor set, then, is quite literally the “dust” at the end of the trail. Said another way, 

each such “path” determines a unique sequence of nested subintervals, one from each 

level, whose intersection is a single point of D. Conversely, each point x Î D lies at the 

end of exactly one such path, because at any given level there is only one possible subin-

terval of In on our diagram, call it I
�

n , that contains x. The resulting sequence of intervals 

is clearly nested (why?). 

Thus, the Cantor set D is in one-to-one correspondence with the set of all paths, that is, 

the set of all sequences of L’s and R’s. Of course, any two choices would have done just 

as well, so we might also say that D is equivalent to the set of all sequences of 0’s and 1’s 

– a set we already know to be uncountable. 

Here is what this means: 

          cardHDL = 2À0 = cardH@0, 1DL .

Absolutely amazing! The Cantor set is just as “big” as @0, 1D and yet it strains the imagina-

tion to picture such a sparse set of points. Before we give our second proof that D is 

uncountable, let’s see why D is “small” (in at least one sense). We will show that D has 

“measure zero”; that is, the “measure” or “total length” of all of the intervals in its comple-

ment @0, 1D\D is 1. 

Here’s why: 

By induction, the total length of the 2n-1 disjoint intervals comprising Jn (the set we 

discard at the nth stage) is 
2n-1

3n
. 

So the total length of @0, 1D\D must be

Ú
n=1

¥
2n-1

3n
=

1

3
Ú
n=1

¥

J 2

3
N
n-1

=
1

3

1

1 -
2

3

= 1 .

We have discarded everything!? And left uncountably many points behind!? How 

bizarre! This simultaneous “bigness” and “smallness” is precisely what makes the Cantor 

set so intriguing.

Our second proof that D is uncountable is based on an equivalent characterization of D 

in terms of ternary (base 3) decimals. Recall that each x in @0, 1D can be written, in possi-

bly more than one way, as: x = 0. a1 a2 a3 … Hbase 3L, where each an = 0, 1, or 2. This 

three-way choice for decimal digits (base 3) corresponds to the three-way splitting of 

intervals that we saw earlier. 

To see this, let us consider a few specific examples. 

For instance, the three cases a1 = 0, 1, or 2 correspond to the three intervals @0, 1 � 3D,  
H1 � 3, 2 � 3L,  and @2 � 3, 1D :

            

There is some ambiguity at these endpoints:

 

   

but each of these ambiguous cases has at least one representation with a1 in the proper 

range. Next, the figure below shows the situation for I2 (but this time ignoring the dis-

carded intervals): 

             

Again, some confusion is possible at the endpoints:

             

We take these few examples as proof of the following theorem.

• Theorem: 

x Î D iff x can be written as Ú
n=1

¥
an

3n
, where each an is either 0 or 2. 

Thus the Cantor set consists of those points in @0, 1D having some base 3 decimal represen-

tation that excludes the digit 1. Knowing this we can list all sorts of elements of D. For 

example, 
1

4
Î D because 

1

4
= 0.020202 … Hbase 3L. 

The above theorem also leads to another proof that D is uncountable; or, rather, it gives 

us a new way of writing the old proof. The first proof used sequences of 0’s and 1’s, and 

now we find ourselves with sequences of 0’s and 2’s; the connection isn’t hard to guess.

• Corollary:

D is uncountable. In fact, D is equivalent to @0, 1D. 

Proof:

By altering our notation we can easily display a correspondence between D and @0, 1D. 

Each x Î D may be written x = Ú
n=1

¥
2 bn

3n
 , where bn = 0 or 1 , and now we define the Can-

tor function f : D�@0, 1D by

                f Ú
n=1

¥
2 bn

3n
= Ú

n=1

¥
bn

2n        (where bn = 0, 1)

  

That is, 

Now f  is clearly onto, and hence we have a second proof that D is uncountable (why?). 

But f  isn’t one-to-one; here’s why: 

           

The same phenomenon occurs at each pair of endpoints of any discarded “middle third” 

interval (i.e., a subinterval of Jn):

        

It is easy to see that f  is increasing; that is, if with x < y, then f HxL £ f H yL. We leave it as 

an exercise to check that f HxL = f H yL iff x and y are endpoints of a discarded “middle 

third” interval (see Exercise 26 on Carother’s ). Thus, f  is one-to-one except at the end-

points of D (a countable set), where it’s two-to-one. It follows that D is equivalent to 

@0, 1D. (How?) à
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